示例#1
0
文件: __init__.py 项目: slitayem/fuxi
def PrepareHornClauseForRETE(horn_clause):
    if isinstance(horn_clause, Rule):
        horn_clause = horn_clause.formula

    def extractVariables(term, existential=True):
        if isinstance(term, existential and BNode or Variable):
            yield term
        elif isinstance(term, Uniterm):
            for t in term.toRDFTuple():
                if isinstance(t, existential and BNode or Variable):
                    yield t

    from FuXi.Rete.SidewaysInformationPassing import iterCondition, GetArgs

    #first we identify body variables
    bodyVars = set(
        reduce(lambda x, y: x + y, [
            list(extractVariables(i, existential=False))
            for i in iterCondition(horn_clause.body)
        ]))

    #then we identify head variables
    headVars = set(
        reduce(lambda x, y: x + y, [
            list(extractVariables(i, existential=False))
            for i in iterCondition(horn_clause.head)
        ]))

    #then we identify those variables that should (or should not) be converted to skolem terms
    updateDict = dict([(var, BNode()) for var in headVars
                       if var not in bodyVars])

    if set(updateDict.keys()).intersection(GetArgs(horn_clause.head)):
        #There are skolem terms in the head
        newHead = copy.deepcopy(horn_clause.head)
        for uniTerm in iterCondition(newHead):
            newArg = [updateDict.get(i, i) for i in uniTerm.arg]
            uniTerm.arg = newArg
        horn_clause.head = newHead

    skolemsInBody = [
        list(
            itertools.ifilter(lambda term: isinstance(term, BNode),
                              GetArgs(lit)))
        for lit in iterCondition(horn_clause.body)
    ]
    skolemsInBody = reduce(lambda x, y: x + y, skolemsInBody, [])
    if skolemsInBody:
        newBody = copy.deepcopy(horn_clause.body)
        _e = Exists(formula=newBody, declare=set(skolemsInBody))
        horn_clause.body = _e

    PrepareHeadExistential(horn_clause)
示例#2
0
 def collapseMINUS(left, right):
     negVars = set()
     for pred in iterCondition(right):
         negVars.update(
             [term for term in GetArgs(pred) if isinstance(term, Variable)])
     innerCopyPatternNeeded = not negVars.difference(positiveVars)
     #A copy pattern is needed if the negative literals don't introduce new vars
     if innerCopyPatternNeeded:
         innerCopyPatterns, innerVars, innerVarExprs = createCopyPattern(
             [right])
         #We use an arbitrary new variable as for the outer FILTER(!BOUND(..))
         outerFilterVariable = list(innerVars.values())[0]
         optionalPatterns = [right] + innerCopyPatterns
         negatedBGP = optional(
             *[formula.toRDFTuple() for formula in optionalPatterns])
         negatedBGP.filter(
             *[k == v for k, v in list(innerVarExprs.items())])
         positiveVars.update(
             [Variable(k.value[0:]) for k in list(innerVarExprs.keys())])
         positiveVars.update(list(innerVarExprs.values()))
     else:
         #We use an arbitrary, 'independent' variable for the outer FILTER(!BOUND(..))
         outerFilterVariable = negVars.difference(positiveVars).pop()
         optionalPatterns = [right]
         negatedBGP = optional(
             *[formula.toRDFTuple() for formula in optionalPatterns])
         positiveVars.update(negVars)
     left = left.where(*[negatedBGP])
     left = left.filter(~op.bound(outerFilterVariable))
     return left
示例#3
0
def literalIsGround(literal):
    """
    Whether or not the given literal has
    any variables for terms
    """
    return not [
        term for term in GetArgs(literal, secondOrder=True)
        if isinstance(term, Variable)
    ]
示例#4
0
 def isSafe(self):
     """
     A RIF-Core rule, r is safe if and only if
     - r is a rule implication, φ :- ψ, and all the variables that occur 
       in φ are safe in ψ, and all the variables that occur in ψ are bound in ψ;
     - or r is a universal rule, Forall v1,...,vn (r'), n ≥ 1, and r' is safe.        
     
     >>> clause1 = Clause(And([Uniterm(RDFS.subClassOf,[Variable('C'),Variable('SC')]),
     ...                      Uniterm(RDF.type,[Variable('M'),Variable('C')])]),
     ...                 Uniterm(RDF.type,[Variable('M'),Variable('SC')]))
     >>> r1 = Rule(clause1,[Variable('M'),Variable('SC'),Variable('C')])
     >>> clause2 = Clause(And([Uniterm(RDFS.subClassOf,[Variable('C'),Variable('SC')])]),
     ...                 Uniterm(RDF.type,[Variable('M'),Variable('SC')]))
     >>> r2 = Rule(clause2,[Variable('M'),Variable('SC'),Variable('C')])        
     >>> r1.isSafe()
     True
     >>> r2.isSafe()
     False
     
     >>> skolemTerm = BNode()
     >>> e = Exists(Uniterm(RDFS.subClassOf,[skolemTerm,Variable('C')]),declare=[skolemTerm])
     >>> r1.formula.head = e
     >>> r1.isSafe()
     False
     """
     from FuXi.Rete.SidewaysInformationPassing import GetArgs, iterCondition
     assert isinstance(self.formula.head,(Exists,Atomic)),\
                       "Safety can only be checked on rules in normal form"
     for var in itertools.ifilter(
             lambda term: isinstance(term, (Variable, BNode)),
             GetArgs(self.formula.head)):
         if not self.formula.body.isSafeForVariable(var):
             return False
     for var in itertools.ifilter(
             lambda term: isinstance(term, (Variable, BNode)),
             reduce(
                 lambda l, r: l + r,
                 [GetArgs(lit)
                  for lit in iterCondition(self.formula.body)])):
         if not self.formula.body.binds(var):
             return False
     return True
示例#5
0
 def __init__(self, clause, declare=None, nsMapping=None):
     decl = set()
     self.ruleStr = ''
     for pred in itertools.chain(iterCondition(clause.head),
                                 iterCondition(clause.body)):
         decl.update(
             [term for term in GetArgs(pred) if isinstance(term, Variable)])
         if isinstance(pred, AdornedUniTerm):
             self.ruleStr += ''.join(pred.adornment)
         self.ruleStr += ''.join(pred.toRDFTuple())
     super(AdornedRule, self).__init__(clause, decl, nsMapping)
示例#6
0
def PrepareHeadExistential(clause):
    from FuXi.Rete.SidewaysInformationPassing import GetArgs
    skolemsInHead = [
        list(filter(lambda term: isinstance(term, BNode), GetArgs(lit)))
        for lit in iterCondition(clause.head)
    ]
    skolemsInHead = reduce(lambda x, y: x + y, skolemsInHead, [])
    if skolemsInHead:
        newHead = copy.deepcopy(clause.head)
        _e = Exists(formula=newHead, declare=set(skolemsInHead))
        clause.head = _e
    return clause
示例#7
0
 def getDistinguishedVariables(self, varsOnly=False):
     if self.op == RDF.type:
         for idx, term in enumerate(GetArgs(self)):
             if self.adornment[idx] == 'b':
                 if not varsOnly or isinstance(term, Variable):
                     yield term
     else:
         for idx, term in enumerate(self.arg):
             try:
                 if self.adornment[idx] == 'b':
                     if not varsOnly or isinstance(term, Variable):
                         yield term
             except IndexError:
                 pass
示例#8
0
def SipStrategy(query,
                sipCollection,
                factGraph,
                derivedPreds,
                bindings={},
                processedRules=None,
                network=None,
                debug=False,
                buildProof=False,
                memoizeMemory=None,
                proofLevel=1):
    """
    Accordingly, we define a sip-strategy for computing the answers to a query
    expressed using a set of Datalog rules, and a set of sips, one for each
    adornment of a rule head, as follows...

    Each evaluation uses memoization (via Python decorators) but also relies on well-formed
    rewrites for using semi-naive bottom up method over large SPARQL data.

    """
    memoizeMemory = memoizeMemory and memoizeMemory or {}
    queryLiteral = BuildUnitermFromTuple(query)
    processedRules = processedRules and processedRules or set()
    if bindings:
        #There are bindings.  Apply them to the terms in the query
        queryLiteral.ground(bindings)

    if debug:
        print("%sSolving" % ('\t' * proofLevel), queryLiteral, bindings)
    # Only consider ground triple pattern isomorphism with matching bindings
    goalRDFStatement = queryLiteral.toRDFTuple()

    if queryLiteral in memoizeMemory:
        if debug:
            print("%sReturning previously calculated results for " % \
                        ('\t' * proofLevel), queryLiteral)
        for answers in memoizeMemory[queryLiteral]:
            yield answers
    elif AlphaNode(goalRDFStatement).alphaNetworkHash(
                                      True,
                                      skolemTerms=list(bindings.values())) in \
        [AlphaNode(r.toRDFTuple()).alphaNetworkHash(True,
                                                    skolemTerms=list(bindings.values()))
            for r in processedRules
                if AdornLiteral(goalRDFStatement).adornment == \
                   r.adornment]:
        if debug:
            print("%s Goal already processed..." % \
                ('\t' * proofLevel))
    else:
        isGround = literalIsGround(queryLiteral)
        if buildProof:
            ns = NodeSet(goalRDFStatement, network=network, identifier=BNode())
        else:
            ns = None
        # adornedProgram = factGraph.adornedProgram
        queryPred = GetOp(queryLiteral)
        if sipCollection is None:
            rules = []
        else:
            #For every rule head matching the query, we invoke the rule,
            #thus determining an adornment, and selecting a sip to follow
            rules = sipCollection.headToRule.get(queryPred, set())
            if None in sipCollection.headToRule:
                #If there are second order rules, we add them
                #since they are a 'wildcard'
                rules.update(sipCollection.headToRule[None])

        #maintained list of rules that haven't been processed before and
        #match the query
        validRules = []

        #each subquery contains values for the bound arguments that are passed
        #through the sip arcs entering the node corresponding to that literal. For
        #each subquery generated, there is a set of answers.
        answers = []

        # variableMapping = {}

        #Some TBox queries can be 'joined' together into SPARQL queries against
        #'base' predicates via an RDF dataset
        #These atomic concept inclusion axioms can be evaluated together
        #using a disjunctive operator at the body of a horn clause
        #where each item is a query of the form uniPredicate(?X):
        #Or( uniPredicate1(?X1), uniPredicate2(?X), uniPredicate3(?X), ..)
        #In this way massive, conjunctive joins can be 'mediated'
        #between the stated facts and the top-down solver
        @parameterizedPredicate([i for i in derivedPreds])
        def IsAtomicInclusionAxiomRHS(rule, dPreds):
            """
            This is an atomic inclusion axiom with
            a variable (or bound) RHS:  uniPred(?ENTITY)
            """
            bodyList = list(iterCondition(rule.formula.body))
            body = first(bodyList)
            return GetOp(body) not in dPreds and \
                   len(bodyList) == 1 and \
                   body.op == RDF.type

        atomicInclusionAxioms = list(filter(IsAtomicInclusionAxiomRHS, rules))
        if atomicInclusionAxioms and len(atomicInclusionAxioms) > 1:
            if debug:
                print("\tCombining atomic inclusion axioms: ")
                pprint(atomicInclusionAxioms, sys.stderr)
            if buildProof:
                factStep = InferenceStep(ns, source='some RDF graph')
                ns.steps.append(factStep)

            axioms = [rule.formula.body for rule in atomicInclusionAxioms]

            #attempt to exaustively apply any available substitutions
            #and determine if query if fully ground
            vars = [
                v for v in GetArgs(queryLiteral, secondOrder=True)
                if isinstance(v, Variable)
            ]
            openVars, axioms, _bindings = \
                    normalizeBindingsAndQuery(vars,
                                              bindings,
                                              axioms)
            if openVars:
                # mappings = {}
                #See if we need to do any variable mappings from the query literals
                #to the literals in the applicable rules
                query, rt = EDBQuery(axioms, factGraph, openVars,
                                     _bindings).evaluate(
                                         debug, symmAtomicInclusion=True)
                if buildProof:
                    factStep.groundQuery = subquery
                for ans in rt:
                    if buildProof:
                        factStep.bindings.update(ans)
                    memoizeMemory.setdefault(queryLiteral, set()).add(
                        (prepMemiozedAns(ans), ns))
                    yield ans, ns
            else:
                #All the relevant derivations have been explored and the result
                #is a ground query we can directly execute against the facts
                if buildProof:
                    factStep.bindings.update(bindings)
                query, rt = EDBQuery(axioms, factGraph, _bindings).evaluate(
                    debug, symmAtomicInclusion=True)
                if buildProof:
                    factStep.groundQuery = subquery
                memoizeMemory.setdefault(queryLiteral, set()).add(
                    (prepMemiozedAns(rt), ns))
                yield rt, ns
            rules = filter(lambda i: not IsAtomicInclusionAxiomRHS(i), rules)
        for rule in rules:
            #An exception is the special predicate ph; it is treated as a base
            #predicate and the tuples in it are those supplied for qb by unification.
            headBindings = getBindingsFromLiteral(goalRDFStatement,
                                                  rule.formula.head)
            # comboBindings = dict([(k, v) for k, v in itertools.chain(
            #                                           bindings.items(),
            #                                           headBindings.items())])
            varMap = rule.formula.head.getVarMapping(queryLiteral)
            if headBindings and\
                [term for term in rule.formula.head.getDistinguishedVariables(True)
                        if varMap.get(term, term) not in headBindings]:
                continue
            # subQueryAnswers = []
            # dontStop = True
            # projectedBindings = comboBindings.copy()
            if debug:
                print("%sProcessing rule" % \
                            ('\t' * proofLevel), rule.formula)
                if debug and sipCollection:
                    print("Sideways Information Passing (sip) graph for %s: " %
                          queryLiteral)
                    print(sipCollection.serialize(format='n3'))
                    for sip in SIPRepresentation(sipCollection):
                        print(sip)
            try:
                # Invoke the rule
                if buildProof:
                    step = InferenceStep(ns, rule.formula)
                else:
                    step = None
                for rt, step in\
                  invokeRule([headBindings],
                              iter(iterCondition(rule.formula.body)),
                              rule.sip,
                              (proofLevel + 1,
                               memoizeMemory,
                               sipCollection,
                               factGraph,
                               derivedPreds,
                               processedRules.union([
                                 AdornLiteral(query)])),
                              step=step,
                              debug=debug):
                    if rt:
                        if isinstance(rt, dict):
                            #We received a mapping and must rewrite it via
                            #correlation between the variables in the rule head
                            #and the variables in the original query (after applying
                            #bindings)
                            varMap = rule.formula.head.getVarMapping(
                                queryLiteral)
                            if varMap:
                                rt = MakeImmutableDict(
                                    refactorMapping(varMap, rt))
                            if buildProof:
                                step.bindings = rt
                        else:
                            if buildProof:
                                step.bindings = headBindings
                        validRules.append(rule)
                        if buildProof:
                            ns.steps.append(step)
                        if isGround:
                            yield True, ns
                        else:
                            memoizeMemory.setdefault(queryLiteral, set()).add(
                                (prepMemiozedAns(rt), ns))
                            yield rt, ns

            except RuleFailure:
                # Clean up failed antecedents
                if buildProof:
                    if ns in step.antecedents:
                        step.antecedents.remove(ns)
        if not validRules:
            #No rules matching, query factGraph for answers
            successful = False
            if buildProof:
                factStep = InferenceStep(ns, source='some RDF graph')
                ns.steps.append(factStep)
            if not isGround:
                subquery, rt = EDBQuery([queryLiteral], factGraph, [
                    v for v in GetArgs(queryLiteral, secondOrder=True)
                    if isinstance(v, Variable)
                ], bindings).evaluate(debug)
                if buildProof:
                    factStep.groundQuery = subquery
                for ans in rt:
                    successful = True
                    if buildProof:
                        factStep.bindings.update(ans)
                    memoizeMemory.setdefault(queryLiteral, set()).add(
                        (prepMemiozedAns(ans), ns))
                    yield ans, ns
                if not successful and queryPred not in derivedPreds:
                    #Open query didn't return any results and the predicate
                    #is ostensibly marked as derived predicate, so we have failed
                    memoizeMemory.setdefault(queryLiteral, set()).add(
                        (False, ns))
                    yield False, ns
            else:
                #All the relevant derivations have been explored and the result
                #is a ground query we can directly execute against the facts
                if buildProof:
                    factStep.bindings.update(bindings)

                subquery, rt = EDBQuery([queryLiteral], factGraph,
                                        bindings).evaluate(debug)
                if buildProof:
                    factStep.groundQuery = subquery
                memoizeMemory.setdefault(queryLiteral, set()).add(
                    (prepMemiozedAns(rt), ns))
                yield rt, ns
示例#9
0
def invokeRule(priorAnswers,
               bodyLiteralIterator,
               sip,
               otherargs,
               priorBooleanGoalSuccess=False,
               step=None,
               debug=False,
               buildProof=False):
    """
    Continue invokation of rule using (given) prior answers and list of
    remaining body literals (& rule sip).  If prior answers is a list,
    computation is split disjunctively

    [..] By combining the answers to all these subqueries, we generate
    answers for the original query involving the rule head

    Can also takes a PML step and updates it as it navigates the
    top-down proof tree (passing it on and updating it where necessary)

    """
    assert not buildProof or step is not None

    proofLevel, memoizeMemory, sipCollection, \
        factGraph, derivedPreds, processedRules = otherargs

    remainingBodyList = [i for i in bodyLiteralIterator]
    lazyGenerator = lazyGeneratorPeek(priorAnswers, 2)
    if lazyGenerator.successful:
        # There are multiple answers in this step, we need to call invokeRule
        # recursively for each answer, returning the first positive attempt
        success = False
        rt = None
        _step = None
        ansNo = 0
        for priorAns in lazyGenerator:
            ansNo += 1
            try:
                if buildProof:
                    newStep = InferenceStep(step.parent,
                                            step.rule,
                                            source=step.source)
                    newStep.antecedents = [ant for ant in step.antecedents]
                else:
                    newStep = None
                for rt, _step in\
                   invokeRule([priorAns],
                              iter([i for i in remainingBodyList]),
                              sip,
                              otherargs,
                              priorBooleanGoalSuccess,
                              newStep,
                              debug=debug,
                              buildProof=buildProof):
                    if rt:
                        yield rt, _step
            except RuleFailure:
                pass
        if not success:
            # None of prior answers were successful
            # indicate termination of rule processing
            raise RuleFailure(
                "Unable to solve either of %s against remainder of rule: %s" %
                (ansNo, remainingBodyList))
            # yield False, _InferenceStep(step.parent, step.rule, source=step.source)
    else:
        lazyGenerator = lazyGeneratorPeek(lazyGenerator)
        projectedBindings = lazyGenerator.successful and first(
            lazyGenerator) or {}

        # First we check if we can combine a large group of subsequent body literals
        # into a single query
        # if we have a template map then we use it to further
        # distinguish which builtins can be solved via
        # cumulative SPARQl query - else we solve
        # builtins one at a time
        def sparqlResolvable(literal):
            if isinstance(literal, Uniterm):
                return not literal.naf and GetOp(literal) not in derivedPreds
            else:
                return isinstance(literal, N3Builtin) and \
                       literal.uri in factGraph.templateMap

        def sparqlResolvableNoTemplates(literal):

            if isinstance(literal, Uniterm):
                return not literal.naf and GetOp(literal) not in derivedPreds
            else:
                return False

        conjGroundLiterals = list(
                        itertools.takewhile(
                          hasattr(factGraph, 'templateMap') and sparqlResolvable or \
                          sparqlResolvableNoTemplates,
                          remainingBodyList))

        bodyLiteralIterator = iter(remainingBodyList)

        if len(conjGroundLiterals) > 1:
            # If there are literals to combine *and* a mapping from rule
            # builtins to SPARQL FILTER templates ..
            basePredicateVars = set(
                reduce(lambda x, y: x + y, [
                    list(GetVariables(arg, secondOrder=True))
                    for arg in conjGroundLiterals
                ]))
            if projectedBindings:
                openVars = basePredicateVars.intersection(projectedBindings)
            else:
                # We don't have any given bindings, so we need to treat
                # the body as an open query
                openVars = basePredicateVars

            queryConj = EDBQuery(
                [copy.deepcopy(lit) for lit in conjGroundLiterals], factGraph,
                openVars, projectedBindings)

            query, answers = queryConj.evaluate(debug)

            if isinstance(answers, bool):
                combinedAnswers = {}
                rtCheck = answers
            else:
                if projectedBindings:
                    combinedAnswers = (mergeMappings1To2(ans,
                                                         projectedBindings,
                                                         makeImmutable=True)
                                       for ans in answers)
                else:
                    combinedAnswers = (MakeImmutableDict(ans)
                                       for ans in answers)
                combinedAnsLazyGenerator = lazyGeneratorPeek(combinedAnswers)
                rtCheck = combinedAnsLazyGenerator.successful

            if not rtCheck:
                raise RuleFailure("No answers for combined SPARQL query: %s" %
                                  query)
            else:
                # We have solved the previous N body literals with a single
                # conjunctive query, now we need to make each of the literals
                # an antecedent to a 'query' step.
                if buildProof:
                    queryStep = InferenceStep(None, source='some RDF graph')
                    queryStep.groundQuery = subquery
                    queryStep.bindings = {}  # combinedAnswers[-1]
                    queryHash = URIRef(
                            "tag:[email protected]:Queries#" + \
                                                    makeMD5Digest(subquery))
                    queryStep.identifier = queryHash
                    for subGoal in conjGroundLiterals:
                        subNs = NodeSet(subGoal.toRDFTuple(),
                                        identifier=BNode())
                        subNs.steps.append(queryStep)
                        step.antecedents.append(subNs)
                        queryStep.parent = subNs
                for rt, _step in invokeRule(
                        isinstance(answers, bool) and [projectedBindings]
                        or combinedAnsLazyGenerator,
                        iter(remainingBodyList[len(conjGroundLiterals):]),
                        sip,
                        otherargs,
                        isinstance(answers, bool),
                        step,
                        debug=debug,
                        buildProof=buildProof):
                    yield rt, _step

        else:
            # Continue processing rule body condition
            # one literal at a time
            try:
                bodyLiteral = next(
                    bodyLiteralIterator
                ) if py3compat.PY3 else bodyLiteralIterator.next()
                # if a N3 builtin, execute it using given bindings for boolean answer
                # builtins are moved to end of rule when evaluating rules via sip
                if isinstance(bodyLiteral, N3Builtin):
                    lhs = bodyLiteral.argument
                    rhs = bodyLiteral.result
                    lhs = isinstance(
                        lhs, Variable) and projectedBindings[lhs] or lhs
                    rhs = isinstance(
                        rhs, Variable) and projectedBindings[rhs] or rhs
                    assert lhs is not None and rhs is not None
                    if bodyLiteral.func(lhs, rhs):
                        if debug:
                            print("Invoked %s(%s, %s) -> True" %
                                  (bodyLiteral.uri, lhs, rhs))
                        # positive answer means we can continue processing the rule body
                        if buildProof:
                            ns = NodeSet(bodyLiteral.toRDFTuple(),
                                         identifier=BNode())
                            step.antecedents.append(ns)
                        for rt, _step in invokeRule([projectedBindings],
                                                    bodyLiteralIterator,
                                                    sip,
                                                    otherargs,
                                                    step,
                                                    priorBooleanGoalSuccess,
                                                    debug=debug,
                                                    buildProof=buildProof):
                            yield rt, _step
                    else:
                        if debug:
                            print("Successfully invoked %s(%s, %s) -> False" %
                                  (bodyLiteral.uri, lhs, rhs))
                        raise RuleFailure(
                            "Failed builtin invokation %s(%s, %s)" %
                            (bodyLiteral.uri, lhs, rhs))
                else:
                    # For every body literal, subqueries are generated according
                    # to the sip
                    sipArcPred = URIRef(GetOp(bodyLiteral) + \
                                '_' + '_'.join(GetArgs(bodyLiteral)))
                    assert len(list(IncomingSIPArcs(sip, sipArcPred))) < 2
                    subquery = copy.deepcopy(bodyLiteral)
                    subquery.ground(projectedBindings)

                    for N, x in IncomingSIPArcs(sip, sipArcPred):
                        #That is, each subquery contains values for the bound arguments
                        #that are passed through the sip arcs entering the node
                        #corresponding to that literal

                        #Create query out of body literal and apply sip-provided bindings
                        subquery = copy.deepcopy(bodyLiteral)
                        subquery.ground(projectedBindings)
                    if literalIsGround(subquery):
                        #subquery is ground, so there will only be boolean answers
                        #we return the conjunction of the answers for the current
                        #subquery

                        answer = False
                        ns = None

                        answers = first(
                                    itertools.dropwhile(
                                            lambda item: not item[0],
                                            SipStrategy(
                                                    subquery.toRDFTuple(),
                                                    sipCollection,
                                                    factGraph,
                                                    derivedPreds,
                                                    MakeImmutableDict(projectedBindings),
                                                    processedRules,
                                                    network=step is not None and \
                                                            step.parent.network or None,
                                                    debug=debug,
                                                    buildProof=buildProof,
                                                    memoizeMemory=memoizeMemory,
                                                    proofLevel=proofLevel)))
                        if answers:
                            answer, ns = answers
                        if not answer and not bodyLiteral.naf or \
                            (answer and bodyLiteral.naf):
                            #negative answer means the invokation of the rule fails
                            #either because we have a positive literal and there
                            #is no answer for the subgoal or the literal is
                            #negative and there is an answer for the subgoal
                            raise RuleFailure(
                                "No solutions solving ground query %s" %
                                subquery)
                        else:
                            if buildProof:
                                if not answer and bodyLiteral.naf:
                                    ns.naf = True
                                step.antecedents.append(ns)
                            #positive answer means we can continue processing the rule body
                            #either because we have a positive literal and answers
                            #for subgoal or a negative literal and no answers for the
                            #the goal
                            for rt, _step in invokeRule([projectedBindings],
                                                        bodyLiteralIterator,
                                                        sip,
                                                        otherargs,
                                                        True,
                                                        step,
                                                        debug=debug):
                                yield rt, _step
                    else:
                        _answers = \
                                SipStrategy(subquery.toRDFTuple(),
                                            sipCollection,
                                            factGraph,
                                            derivedPreds,
                                            MakeImmutableDict(projectedBindings),
                                            processedRules,
                                            network=step is not None and \
                                                    step.parent.network or None,
                                            debug=debug,
                                            buildProof=buildProof,
                                            memoizeMemory=memoizeMemory,
                                            proofLevel=proofLevel)

                        # solve (non-ground) subgoal
                        def collectAnswers(_ans):
                            for ans, ns in _ans:
                                if isinstance(ans, dict):
                                    try:
                                        map = mergeMappings1To2(
                                            ans,
                                            projectedBindings,
                                            makeImmutable=True)
                                        yield map
                                    except:
                                        pass

                        combinedAnswers = collectAnswers(_answers)
                        answers = lazyGeneratorPeek(combinedAnswers)
                        if not answers.successful \
                            and not bodyLiteral.naf \
                            or (bodyLiteral.naf and answers.successful):
                            raise RuleFailure(
                                "No solutions solving ground query %s" %
                                subquery)
                        else:
                            # Either we have a positive subgoal and answers
                            # or a negative subgoal and no answers
                            if buildProof:
                                if answers.successful:
                                    goals = set([g for a, g in answers])
                                    assert len(goals) == 1
                                    step.antecedents.append(goals.pop())
                                else:
                                    newNs = NodeSet(
                                        bodyLiteral.toRDFTuple(),
                                        network=step.parent.network,
                                        identifier=BNode(),
                                        naf=True)
                                    step.antecedents.append(newNs)
                            for rt, _step in invokeRule(
                                    answers,
                                    bodyLiteralIterator,
                                    sip,
                                    otherargs,
                                    priorBooleanGoalSuccess,
                                    step,
                                    debug=debug,
                                    buildProof=buildProof):
                                yield rt, _step
            except StopIteration:
                #Finished processing rule
                if priorBooleanGoalSuccess:
                    yield projectedBindings and projectedBindings or True, step
                elif projectedBindings:
                    #Return the most recent (cumulative) answers and the given step
                    yield projectedBindings, step
                else:
                    raise RuleFailure(
                        "Finished processing rule unsuccessfully")
示例#10
0
 def hasBindings(self):
     for idx, term in enumerate(GetArgs(self)):
         if self.adornment[idx] == 'b':
             if not varsOnly or isinstance(term, Variable):
                 return True
     return False
示例#11
0
def AdornRule(derivedPreds,
              clause,
              newHead,
              ignoreUnboundDPreds=False,
              hybridPreds2Replace=None):
    """
    Adorns a horn clause using the given new head and list of
    derived predicates
    """
    assert len(list(iterCondition(clause.head))) == 1
    hybridPreds2Replace = hybridPreds2Replace or []
    adornedHead = AdornedUniTerm(clause.head, newHead.adornment)
    sip = BuildNaturalSIP(clause,
                          derivedPreds,
                          adornedHead,
                          hybridPreds2Replace=hybridPreds2Replace,
                          ignoreUnboundDPreds=ignoreUnboundDPreds)
    bodyPredReplace = {}

    def adornment(arg, headArc, x):
        if headArc:
            # Sip arc from head
            # don't mark bound if query has no bound/distinguished terms
            return (arg in x and
                    arg in adornedHead.getDistinguishedVariables(True)) \
                        and 'b' or 'f'
        else:
            return arg in x and 'b' or 'f'

    for literal in iterCondition(sip.sipOrder):
        op = GetOp(literal)
        args = GetArgs(literal)
        if op in derivedPreds or (op in hybridPreds2Replace
                                  if hybridPreds2Replace else False):
            for N, x in IncomingSIPArcs(sip, getOccurrenceId(literal)):
                headArc = len(N) == 1 and N[0] == GetOp(newHead)
                if not set(x).difference(args):
                    # A binding
                    # for q is useful, however, only if it is a binding for an argument of q.
                    bodyPredReplace[literal] = AdornedUniTerm(
                        NormalizeUniterm(literal),
                        [adornment(arg, headArc, x) for arg in args],
                        literal.naf)
                # For a predicate occurrence with no incoming
                # arc, the adornment contains only f. For our purposes here,
                # we do not distinguish between a predicate with such an
                # adornment and an unadorned predicate (we do in order to support open queries)
            if literal not in bodyPredReplace and ignoreUnboundDPreds:
                bodyPredReplace[literal] = AdornedUniTerm(
                    NormalizeUniterm(literal),
                    ['f' for arg in GetArgs(literal)], literal.naf)
    if hybridPreds2Replace:
        atomPred = GetOp(adornedHead)
        if atomPred in hybridPreds2Replace:
            adornedHead.setOperator(URIRef(atomPred + u'_derived'))
        for bodAtom in [
                bodyPredReplace.get(p, p) for p in iterCondition(sip.sipOrder)
        ]:
            bodyPred = GetOp(bodAtom)
            if bodyPred in hybridPreds2Replace:
                bodAtom.setOperator(URIRef(bodyPred + u'_derived'))
    rule = AdornedRule(
        Clause(
            And([
                bodyPredReplace.get(p, p) for p in iterCondition(sip.sipOrder)
            ]), adornedHead))
    rule.sip = sip
    return rule
示例#12
0
def MagicSetTransformation(factGraph,
                           rules,
                           GOALS,
                           derivedPreds=None,
                           strictCheck=DDL_STRICTNESS_FALLBACK_DERIVED,
                           noMagic=None,
                           defaultPredicates=None):
    """
    Takes a goal and a ruleset and returns an iterator
    over the rulest that corresponds to the magic set
    transformation:
    """
    noMagic = noMagic and noMagic or []
    magicPredicates = set()
    # replacement = {}
    adornedProgram = SetupDDLAndAdornProgram(
        factGraph,
        rules,
        GOALS,
        derivedPreds=derivedPreds,
        strictCheck=strictCheck,
        defaultPredicates=defaultPredicates)
    newRules = []
    for rule in adornedProgram:
        if rule.isSecondOrder():
            import warnings
            warnings.warn("Second order rule no supported by GMS: %s" % rule,
                          RuntimeWarning)

        magicPositions = {}
        #Generate magic rules
        for idx, pred in enumerate(iterCondition(rule.formula.body)):
            # magicBody = []
            if isinstance(pred,
                          AdornedUniTerm):  # and pred not in magicPredicates:
                # For each rule r in Pad, and for each occurrence of an adorned
                # predicate p a in its body, we generate a magic rule defining magic_p a
                prevPreds = [
                    item for _idx, item in enumerate(rule.formula.body)
                    if _idx < idx
                ]
                if 'b' not in pred.adornment:
                    import warnings
                    warnings.warn(
                        "adorned predicate w/out any bound arguments (%s in %s)"
                        % (pred, rule.formula), RuntimeWarning)
                if GetOp(pred) not in noMagic:
                    magicPred = pred.makeMagicPred()
                    magicPositions[idx] = (magicPred, pred)
                    inArcs = [(N, x) for (
                        N,
                        x) in IncomingSIPArcs(rule.sip, getOccurrenceId(pred))
                              if not set(x).difference(GetArgs(pred))]
                    if len(inArcs) > 1:
                        # If there are several arcs entering qi, we define the
                        # magic rule defining magic_qi in two steps. First,
                        # for each arc Nj --> qi with label cj , we define a
                        # rule with head label_qi_j(cj ). The body of the rule
                        # is the same as the body of the magic rule in the
                        # case where there is a single arc entering qi
                        # (described above). Then the magic rule is defined as
                        # follows. The head is magic_q(0). The body contains
                        # label_qi_j(cj) for all j (that is, for all arcs
                        # entering qi ).
                        #
                        # We combine all incoming arcs into a single list of
                        # (body) conditions for the magic set
                        PrettyPrintRule(rule)
                        SIPRepresentation(rule.sip)
                        print(pred, magicPred)
                        _body = []
                        additionalRules = []
                        for idxSip, (N, x) in enumerate(inArcs):
                            newPred = pred.clone()
                            SetOp(newPred,
                                  URIRef('%s_label_%s' % (newPred.op, idxSip)))
                            ruleBody = And(
                                buildMagicBody(N, prevPreds, rule.formula.head,
                                               derivedPreds))
                            additionalRules.append(
                                Rule(Clause(ruleBody, newPred)))
                            _body.extend(newPred)
                            # _body.extend(ruleBody)
                        additionalRules.append(
                            Rule(Clause(And(_body), magicPred)))
                        newRules.extend(additionalRules)
                        for i in additionalRules:
                            print(i)
                        raise NotImplementedError()
                    else:
                        for idxSip, (N, x) in enumerate(inArcs):
                            ruleBody = And(
                                buildMagicBody(N, prevPreds, rule.formula.head,
                                               derivedPreds, noMagic))
                            newRule = Rule(Clause(ruleBody, magicPred))
                            newRules.append(newRule)
                    magicPredicates.add(magicPred)
        # Modify rules
        # we modify the original rule by inserting
        # occurrences of the magic predicates corresponding
        # to the derived predicates of the body and to the head
        # If there are no bound arguments in the head, we don't modify the rule
        idxIncrement = 0
        newRule = copy.deepcopy(rule)
        for idx, (magicPred, origPred) in list(magicPositions.items()):
            newRule.formula.body.formulae.insert(idx + idxIncrement, magicPred)
            idxIncrement += 1
        if 'b' in rule.formula.head.adornment and GetOp(
                rule.formula.head) not in noMagic:
            headMagicPred = rule.formula.head.makeMagicPred()
            if isinstance(newRule.formula.body, Uniterm):
                newRule.formula.body = And(
                    [headMagicPred, newRule.formula.body])
            else:
                newRule.formula.body.formulae.insert(0, headMagicPred)
        newRules.append(newRule)

    if not newRules:
        newRules.extend(AdditionalRules(factGraph))
    for rule in newRules:
        if rule.formula.body:
            yield rule
示例#13
0
def GetVars(atom):
    from FuXi.Rete.SidewaysInformationPassing import GetArgs
    return [term for term in GetArgs(atom) if isinstance(term, Variable)]
示例#14
0
def StratifiedSPARQL(rule, nsMapping={EX_NS: 'ex'}):
    """
    The SPARQL specification indicates that it is possible to test if a graph
    pattern does not match a dataset, via a combination of optional patterns
    and filter conditions (like negation as failure in logic programming)([9]
    Sec. 11.4.1).
    In this section we analyze in depth the scope and limitations of this
    approach. We will introduce a syntax for the “difference” of two graph
    patterns P1 and P2, denoted (P1 MINUS P2), with the intended informal
    meaning: “the set of mappings that match P1 and does not match P2”.

    Uses telescope to construct the SPARQL MINUS BGP expressions for body
    conditions with default negation formulae
    """
    from FuXi.Rete.SidewaysInformationPassing import (GetArgs, findFullSip,
                                                      iterCondition)
    # Find a sip order of the horn rule
    if isinstance(rule.formula.body, And):
        sipOrder = first(
            findFullSip(([rule.formula.head], None), rule.formula.body))
    else:
        sipOrder = [rule.formula.head] + [rule.formula.body]
    from telescope import optional, op
    from telescope.sparql.queryforms import Select
    # from telescope.sparql.expressions import Expression
    from telescope.sparql.compiler import SelectCompiler
    from telescope.sparql.patterns import GroupGraphPattern
    toDo = []
    negativeVars = set()
    positiveLiterals = False
    for atom in sipOrder[1:]:
        if atom.naf:
            toDo.append(atom)
            negativeVars.update(GetVars(atom))
        else:
            positiveLiterals = True
    #The negative literas are moved to the back of the body conjunct
    #Intuitively, they should not be disconnected from the rest of rule
    #Due to the correlation between DL and guarded FOL
    [sipOrder.remove(toRemove) for toRemove in toDo]

    #posLiterals are all the positive literals leading up to the negated
    #literals (in left-to-right order)  There may be none, see below
    posLiterals = sipOrder[1:]

    posVarIgnore = []
    if not positiveLiterals:
        from FuXi.Horn.PositiveConditions import Uniterm
        #If there are no lead, positive literals (i.e. the LP is of the form:
        #   H :- not B1, not B2, ...
        #Then a 'phantom' triple pattern is needed as the left operand to the OPTIONAL
        #in order to properly implement P0 MINUS P where P0 is an empty pattern
        keyVar = GetVars(rule.formula.head)[0]
        newVar1 = Variable(BNode())
        newVar2 = Variable(BNode())
        posVarIgnore.extend([newVar1, newVar2])
        phantomLiteral = Uniterm(newVar1, [keyVar, newVar2])
        posLiterals.insert(0, phantomLiteral)

    #The positive variables are collected
    positiveVars = set(
        reduce(lambda x, y: x + y, [GetVars(atom) for atom in posLiterals]))

    # vars = {}
    # varExprs = {}
    # copyPatterns = []
    print("%s =: { %s MINUS %s} " % (rule.formula.head, posLiterals, toDo))

    def collapseMINUS(left, right):
        negVars = set()
        for pred in iterCondition(right):
            negVars.update(
                [term for term in GetArgs(pred) if isinstance(term, Variable)])
        innerCopyPatternNeeded = not negVars.difference(positiveVars)
        #A copy pattern is needed if the negative literals don't introduce new vars
        if innerCopyPatternNeeded:
            innerCopyPatterns, innerVars, innerVarExprs = createCopyPattern(
                [right])
            #We use an arbitrary new variable as for the outer FILTER(!BOUND(..))
            outerFilterVariable = list(innerVars.values())[0]
            optionalPatterns = [right] + innerCopyPatterns
            negatedBGP = optional(
                *[formula.toRDFTuple() for formula in optionalPatterns])
            negatedBGP.filter(
                *[k == v for k, v in list(innerVarExprs.items())])
            positiveVars.update(
                [Variable(k.value[0:]) for k in list(innerVarExprs.keys())])
            positiveVars.update(list(innerVarExprs.values()))
        else:
            #We use an arbitrary, 'independent' variable for the outer FILTER(!BOUND(..))
            outerFilterVariable = negVars.difference(positiveVars).pop()
            optionalPatterns = [right]
            negatedBGP = optional(
                *[formula.toRDFTuple() for formula in optionalPatterns])
            positiveVars.update(negVars)
        left = left.where(*[negatedBGP])
        left = left.filter(~op.bound(outerFilterVariable))
        return left

    topLevelQuery = Select(GetArgs(rule.formula.head)).where(
        GroupGraphPattern.from_obj(
            [formula.toRDFTuple() for formula in posLiterals]))
    rt = reduce(collapseMINUS, [topLevelQuery] + toDo)
    return rt, SelectCompiler(nsMapping)