示例#1
0
def extract_table(table_body, __line__, lines=None):
    # Deciding variable
    if (__line__ == 1):
        # Check if table image is  bordered or borderless
        temp_lines_hor, temp_lines_ver = line_detection(table_body)
    else:
        temp_lines_hor, temp_lines_ver = lines

    if len(temp_lines_hor) == 0 or len(temp_lines_ver) == 0:
        print("Either Horizontal Or Vertical Lines Not Detected")
        return None

    table = table_body.copy()
    x = 0
    y = 0
    k = 0
    points = []
    print("[Table status] : Processing table with lines")
    # Remove same lines detected closer
    for x1, y1, x2, y2 in temp_lines_ver:
        point = []
        for x3, y3, x4, y4 in temp_lines_hor:
            try:
                k += 1
                x, y = line_intersection(x1, y1, x2, y2, x3, y3, x4, y4)
                point.append([x, y])
            except:
                continue
        points.append(point)

    for point in points:
        for x, y in point:
            cv2.line(table, (x, y), (x, y), (0, 0, 255), 8)

    cv2.imshow("intersection", table)
    cv2.waitKey(0)

    # boxno = -1
    box = []
    flag = 1
    lastCache = []
    ## creating bounding boxes of cells from the points detected
    ## This is still under work and might fail on some images
    for i, row in enumerate(points):
        limitj = len(row)
        currentVala = []
        for j, col in enumerate(row):

            if (j == limitj - 1):
                break
            if (i == 0):
                nextcol = row[j + 1]
                lastCache.append([
                    col[0], col[1], nextcol[0], nextcol[1], 9999, 9999, 9999,
                    9999
                ])
            else:
                nextcol = row[j + 1]
                currentVala.append([
                    col[0], col[1], nextcol[0], nextcol[1], 9999, 9999, 9999,
                    9999
                ])
                # Matching
                flag = 1
                index = []
                for k, last in enumerate(lastCache):

                    if (col[1] == last[1]) and lastCache[k][4] == 9999:
                        lastCache[k][4] = col[0]
                        lastCache[k][5] = col[1]
                        if lastCache[k][4] != 9999 and lastCache[k][6] != 9999:
                            box.append(lastCache[k])
                            index.append(k)
                            flag = 1

                    if (nextcol[1] == last[3]) and lastCache[k][6] == 9999:
                        lastCache[k][6] = nextcol[0]
                        lastCache[k][7] = nextcol[1]
                        if lastCache[k][4] != 9999 and lastCache[k][6] != 9999:
                            box.append(lastCache[k])
                            index.append(k)
                            flag = 1

                    if len(lastCache) != 0:
                        if lastCache[k][4] == 9999 or lastCache[k][6] == 9999:
                            flag = 0
                # print(index)
                for k in index:
                    lastCache.pop(k)
                # tranfsering
                if flag == 0:
                    for last in lastCache:
                        if last[4] == 9999 or last[6] == 9999:
                            currentVala.append(last)

        if (i != 0):
            lastCache = currentVala

    ## Visualizing the cells ##
    # count = 1
    # for i in box:
    #     cv2.rectangle(table_body, (i[0], i[1]), (i[6], i[7]), (int(i[7]%255),0,int(i[0]%255)), 2)
    # #     count+=1
    # cv2.imshow("cells",table_body)
    # cv2.waitKey(0)
    ############################
    return box
示例#2
0
文件: t_0.py 项目: June-Li/algorithm
import numpy as np
from Functions.line_detection import line_detection

base_path = '/Volumes/my_disk/company/sensedeal/217_PycharmProject/bbtv/PaddleOCR-1.0-2021/doc/my_imgs_11/'
image_name_list = os.listdir(base_path)

for image_name in image_name_list:
    image = cv2.imread(base_path + image_name)

    img_h, img_w, _ = np.shape(image)
    if img_h > 1000:
        resize_h = 1000
    else:
        resize_h = img_w

    temp_lines_hor, temp_lines_ver = line_detection(image)
    temp_lines_hor.append([0, 0, img_w, 0])
    temp_lines_hor.append([0, img_h, img_w, img_h])
    temp_lines_ver.append([0, 0, 0, img_h])
    temp_lines_ver.append([img_w, 0, img_w, img_h])

    show_img = image.copy()

    temp = []
    for line in temp_lines_hor:
        x1, y1, x2, y2 = line
        if abs(x1 - x2) / img_w > 0.618:
            temp.append([x1, y1, x2, y2])
    temp_lines_hor = temp
    for i in temp_lines_hor:
        cv2.line(show_img, (i[0], i[1]), (i[2], i[3]), (0, 0, 255), 2)