def main():

    tf.random.set_seed(22)
    np.random.seed(22)
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    assert tf.__version__.startswith('2.')

    # hyper parameters
    z_dim = 100
    epochs = 3000000
    batch_size = 512
    learning_rate = 0.002
    is_training = True

    img_path = glob.glob('/Users/tongli/Desktop/Python/TensorFlow/faces/*.jpg')

    dataset, img_shape, _ = make_anime_dataset(img_path, batch_size)
    print(dataset, img_shape)
    sample = next(iter(dataset))
    print(sample.shape,
          tf.reduce_max(sample).numpy(),
          tf.reduce_min(sample).numpy())
    dataset = dataset.repeat()
    db_iter = iter(dataset)

    generator = Generator()
    generator.build(input_shape=(None, z_dim))
    discriminator = Discriminator()
    discriminator.build(input_shape=(None, 64, 64, 3))

    g_optimizer = tf.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)
    d_optimizer = tf.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)

    for epoch in range(epochs):

        batch_z = tf.random.uniform([batch_size, z_dim], minval=-1., maxval=1.)
        batch_x = next(db_iter)

        # train D
        with tf.GradientTape() as tape:
            d_loss = d_loss_fn(generator, discriminator, batch_z, batch_x,
                               is_training)
        grads = tape.gradient(d_loss, discriminator.trainable_variables)
        d_optimizer.apply_gradients(
            zip(grads, discriminator.trainable_variables))

        with tf.GradientTape() as tape:
            g_loss = g_loss_fn(generator, discriminator, batch_z, is_training)
        grads = tape.gradient(g_loss, generator.trainable_variables)
        g_optimizer.apply_gradients(zip(grads, generator.trainable_variables))

        if epoch % 100 == 0:
            print(epoch, 'd-loss:', float(d_loss), 'g-loss:', float(g_loss))

            z = tf.random.uniform([100, z_dim])
            fake_image = generator(z, training=False)
            img_path = os.path.join('images', 'gan-%d.png' % epoch)
            save_result(fake_image.numpy(), 10, img_path, color_mode='P')
示例#2
0
    def __init__(self, discriminator_in_nodes, generator_out_nodes, ps_model,
                 ps_model_type, device):
        self.discriminator = Discriminator(
            in_nodes=discriminator_in_nodes).to(device)
        self.discriminator.apply(self.__weights_init)

        self.generator = Generator(out_nodes=generator_out_nodes).to(device)
        self.generator.apply(self.__weights_init)

        self.loss = nn.BCELoss()
        self.ps_model = ps_model
        self.ps_model_type = ps_model_type
示例#3
0
def generator_train():
    image = Gen.generate_img()
    misc.toimage(image).show()

    test_i = Gen.generate_img(50)
    entropy = Dis.use_discrim(test_i, None)
    Gen.train_gen(entropy)

    image = Gen.generate_img()
    misc.toimage(image).show()
示例#4
0
def run_GAN(n_epoch=2,
            batch_size=50,
            use_gpu=False,
            dis_lr=1e-4,
            gen_lr=1e-3,
            n_update_dis=1,
            n_update_gen=1,
            update_max=None):
    # loading data
    trainloader, testloader = load_dataset(batch_size=batch_size)

    # initialize models
    Dis_model = Discriminator()
    Gen_model = Generator()

    if use_gpu:
        Dis_model = Dis_model.cuda()
        Gen_model = Gen_model.cuda()

    # assign loss function and optimizer to D and G
    D_criterion = torch.nn.BCELoss()
    D_optimizer = optim.SGD(Dis_model.parameters(), lr=dis_lr, momentum=0.9)

    G_criterion = torch.nn.BCELoss()
    G_optimizer = optim.SGD(Gen_model.parameters(), lr=gen_lr, momentum=0.9)

    train_GAN(Dis_model,
              Gen_model,
              D_criterion,
              G_criterion,
              D_optimizer,
              G_optimizer,
              trainloader,
              n_epoch,
              batch_size,
              n_update_dis,
              n_update_gen,
              update_max=update_max)
示例#5
0
if __name__ == '__main__':
    
    epochs = 200
    batch_size = 100
    latent_dim = 100
    dataloader = utils.get_dataloader(batch_size)
    device = utils.get_device()
    step_per_epoch = np.ceil(dataloader.dataset.__len__() / batch_size)
    sample_dir = './samples'
    checkpoint_dir = './checkpoints'
    
    utils.makedirs(sample_dir, checkpoint_dir)
    
    G = Generator(latent_dim = latent_dim).to(device)
    D = Discriminator().to(device)
    
    g_optim = utils.get_optim(G, 0.0002)
    d_optim = utils.get_optim(D, 0.0002)
    
    g_log = []
    d_log = []
    
    criterion = nn.BCELoss()
    
    fix_z = torch.randn(batch_size, latent_dim).to(device)
    for epoch_i in range(1, epochs + 1):
        for step_i, (real_img, _) in enumerate(dataloader):
            
            real_labels = torch.ones(batch_size).to(device)
            fake_labels = torch.zeros(batch_size).to(device)
示例#6
0
if not os.path.exists(opt.dataroot):
    os.makedirs(opt.dataroot)
if not os.path.exists(opt.dataroot + '/data'):
    os.makedirs(opt.dataroot + '/data')
if not os.path.exists(opt.dataroot + '/data/test'):
    os.makedirs(opt.dataroot + '/data/test')
if not os.path.exists(opt.dataroot + '/out'):
    os.makedirs(opt.dataroot + '/out')

###### Definition of variables ######
# Networks
netG_A2B = Generator(opt.input_nc, opt.output_nc)
netG_B2A = Generator(opt.output_nc, opt.input_nc)
if opt.mode == 'train':
    netD_A = Discriminator(opt.input_nc)
    netD_B = Discriminator(opt.output_nc)

if opt.cuda:
    torch.cuda.empty_cache()
    netG_A2B.cuda()
    netG_B2A.cuda()
    if opt.mode == 'train':
        netD_A.cuda()
        netD_B.cuda()

if opt.mode == 'train':
    # Data augmentation and prep
    for numm in range(int(opt.n_data / 200)):
        bigimage, biglabel = construct('../train3D')
        sampling(bigimage,
示例#7
0
    return image_batch, class_batch


def generator_train():
    image = Gen.generate_img()
    misc.toimage(image).show()

    test_i = Gen.generate_img(50)
    entropy = Dis.use_discrim(test_i, None)
    Gen.train_gen(entropy)

    image = Gen.generate_img()
    misc.toimage(image).show()


images, classes = [], []
for i in range(1):
    i_batch, c_batch = create_batch(68)
    images.append(i_batch)
    classes.append(c_batch)

Dis.train_discrim(1, images, classes)

images = Gen.generate_img(32)
classes = [[0] for i in range(32)]

cost = Dis.use_discrim(images, classes)

Gen.train_gen(cost)
Gen.get_img()
示例#8
0
文件: train.py 项目: jamekuma/DL_lab5
def train(dataset: Dataset):
    writer = SummaryWriter(log_dir="./log" + '/' + args.type + '_' + args.opt +
                           '_lr' + str(args.lr))
    train_set = torch.utils.data.DataLoader(dataset,
                                            batch_size=args.batch_size)
    G = Generator(args.noise_size).to(device)
    D = Discriminator(args.type).to(device)

    # optimizer_G = torch.optim.Adam(G.parameters(), lr=args.lr)
    # optimizer_D = torch.optim.Adam(D.parameters(), lr=args.lr)
    if args.opt == 'rms':
        optimizer_G = torch.optim.RMSprop(G.parameters(), lr=args.lr)
        optimizer_D = torch.optim.RMSprop(D.parameters(), lr=args.lr)
    else:  # sgd
        optimizer_G = torch.optim.SGD(G.parameters(), lr=args.lr)
        optimizer_D = torch.optim.SGD(D.parameters(), lr=args.lr)

    for epoch in range(args.epochs):
        G.train()
        D.train()
        loss_G_avg = 0.0
        loss_D_avg = 0.0
        for real_data in train_set:
            # 更新D
            real_data = real_data.to(device)  # 真实的数据
            noise = torch.randn(real_data.size(0),
                                args.noise_size).to(device)  # 随机噪声
            fake_data = G(noise).to(device)  # 生成的数据(假数据)
            # log(D(x)+log(1-D(G(z))))  注意fake_data这里不参加backward故detach
            if args.type == 'wgan':
                loss_D = -(D(real_data) - D(fake_data.detach())).mean()
            else:
                loss_D = -(torch.log(D(real_data)) + torch.log(
                    torch.ones(args.batch_size).to(device) -
                    D(fake_data.detach()))).mean()
            optimizer_D.zero_grad()
            loss_D.backward()
            optimizer_D.step()
            loss_D_avg += loss_D.item()

            # wgan则需截断参数
            if args.type == 'wgan':
                for p in D.parameters():
                    p.data.clamp_(-args.wgan_c, args.wgan_c)
            D.zero_grad()

            # 更新G
            noise = torch.randn(real_data.size(0),
                                args.noise_size).to(device)  # 随机噪声
            fake_data = G(noise).to(device)  # 生成的数据(假数据)
            if args.type == 'wgan':
                loss_G = -D(fake_data).mean()
            else:
                loss_G = (torch.log(
                    torch.ones(args.batch_size).to(device) -
                    D(fake_data))).mean()  # log(1-D(G(z))))
            optimizer_G.zero_grad()
            loss_G.backward()
            optimizer_G.step()
            loss_G_avg += loss_G.item()
            G.zero_grad()
        loss_G_avg /= len(train_set)
        loss_D_avg /= len(train_set)
        print('Epoch  {}  loss_G: {:.6f}  loss_D: {:.6f}'.format(
            epoch + 1, loss_G_avg, loss_D_avg))
        writer.add_scalar('train/G_loss',
                          loss_G_avg,
                          epoch + 1,
                          walltime=epoch + 1)
        writer.add_scalar('train/D_loss',
                          loss_D_avg,
                          epoch + 1,
                          walltime=epoch + 1)
        writer.flush()
        if (epoch + 1) % 10 == 0:
            visualize(G, D, dataset.get_numpy_data(), epoch + 1,
                      args.type + '/' + args.opt + '_lr' + str(args.lr))
    writer.close()
示例#9
0
        sampler=sampler,
    )
    lr_change1 = int(config.lr_change1 * len(train_loader))
    lr_change2 = int(config.lr_change2 * len(train_loader))
    lr_change3 = int(config.lr_change3 * len(train_loader))
    lr_change4 = int(config.lr_change4 * len(train_loader))
    ip = CosLinear(in_features=99, out_features=args.number_of_class)
    #############################################################################################
    discriminator_activation_function = torch.relu
    d_hidden_size = 1024
    d_output_size = 1
    # d_learning_rate = 2e-4
    sgd_momentum = 0.9
    D = Discriminator(
        input_size=128,
        hidden_size=d_hidden_size,
        output_size=d_output_size,
        f=discriminator_activation_function,
    ).cuda()
    D = torch.nn.DataParallel(D, device_ids=gpu_ids)
    d_optimizer = torch.optim.SGD(
        D.parameters(),
        lr=config.d_learning_rate,
        momentum=sgd_momentum,
        weight_decay=5e-4,
    )

    ##############################################################################################

    # ip = softmaxLinear (in_features = 512, out_features = args.number_of_class)

    # fr_loss_sup = RingLoss(loss_weight=0.01)
示例#10
0
if __name__ == '__main__':

    epochs = 100
    size_of_batch = 100
    dimensions = 100
    dataloader = utils.get_dataloader(size_of_batch)
    system = utils.get_system()
    steps_per_epoch = np.ceil(dataloader.dataset.__len__() / size_of_batch)
    gan_image_dir = './gan_images'
    checkpoint_dir = './checkpoints'

    utils.makedirs(gan_image_dir, checkpoint_dir)

    Gen = Generator(dimensions=dimensions).to(system)
    Dis = Discriminator().to(system)

    gen_optim = utils.get_optim(Gen, 0.0002)
    dis_optim = utils.get_optim(Dis, 0.0002)

    gen_log = []
    dis_log = []

    criteria = nn.BCELoss()

    fix_z = torch.randn(size_of_batch, dimensions).to(system)
    for epoch_i in range(1, epochs + 1):
        for step, (real_image, _) in enumerate(dataloader):

            real_labels = torch.ones(size_of_batch).to(system)
            fake_labels = torch.zeros(size_of_batch).to(system)
from GAN import Generator, Discriminator
import util
from util import DataLoader

# load data
print('main | Initializing ... ')
digits, noise = DataLoader.load_data()
D = Discriminator()
G = Generator()

# train GAN
print('main | Training ... ')
epochs = 7000
dErrors = []
gErrors = []

for epoch in range(epochs):
    d_error1, d_error2, g_error = 0, 0, 0
    for digit in digits:
        d_error1 += D.fit(digit, isDigit=True)
        gOut = G.generate()
        d_error2 = D.fit(gOut)
        g_error += G.fit(gOut, D)

    if (epoch % 100) == 0:
        dErrors.append(((d_error1 + d_error2) / 2) / 14)
        gErrors.append(g_error / 14)

# show results
sprt = [i for i in range(epochs // 100)]  # for x-axis
util.save_png(G.generate(), "gen_image_ephocs_" + str(epochs))
示例#12
0
def main():
    # HYPERPARAMETERS
    epochs = 500
    batch_size = 32
    alpha_gp = 10
    learning_rate = 0.0001
    beta1 = 0.5
    beta2 = 0.9
    critic_updates_per_generator_update = 1

    # MOFS
    num_atoms = 12
    grid_size = 32

    train_loader = MOFDataset.get_data_loader("../3D_Grid_Data/Test_MOFS.p",
                                              batch_size)

    # Initialize generator and discriminator
    generator: Generator = Generator(num_atoms, grid_size)
    discriminator: Discriminator = Discriminator(num_atoms, grid_size)

    if cuda:
        generator.cuda()
        discriminator.cuda()

    generator_optimizer = torch.optim.Adam(generator.parameters(),
                                           lr=learning_rate,
                                           betas=(beta1, beta2))
    discriminator_optimizer = torch.optim.Adam(discriminator.parameters(),
                                               lr=learning_rate,
                                               betas=(beta1, beta2))

    batches_done = 0
    for epoch in range(epochs):
        for batch, mof in enumerate(train_loader):

            real_images = mof.to(device)
            discriminator_optimizer.zero_grad()
            numpy_array = np.random.normal(0, 1, (real_images.shape[0], 1024))

            z = torch.from_numpy(numpy_array).float().requires_grad_().to(
                device)

            fake_images = generator(z)
            real_validity = discriminator(real_images)
            fake_validity = discriminator(fake_images)
            gradient_penalty = compute_gradient_penalty(
                discriminator, real_images.data, fake_images.data)
            d_loss = -torch.mean(real_validity) + torch.mean(
                fake_validity) + alpha_gp * gradient_penalty

            d_loss.backward()
            discriminator_optimizer.step()
            generator_optimizer.zero_grad()

            if batch % critic_updates_per_generator_update == 0:
                fake_images = generator(z)
                fake_validity = discriminator(fake_images)
                g_loss = -torch.mean(fake_validity)

                g_loss.backward()
                generator_optimizer.step()

                if batch % 16 == 0:
                    print(
                        "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
                        % (epoch, epochs, batch, len(train_loader),
                           d_loss.item(), g_loss.item()))

                # if batch == 0:
                #     print(f"[Epoch {epoch}/{epochs}] [D loss: {d_loss.item()}] [G loss: {g_loss.item()}]")

                if batches_done % 20 == 0:
                    pass
                    # print("Generated Structure: ")
                    # torch.set_printoptions(profile="full")
                    # print(fake_images[0].shape)

            batches_done += 1
示例#13
0
class GAN_Manager:
    def __init__(self, discriminator_in_nodes, generator_out_nodes, ps_model,
                 ps_model_type, device):
        self.discriminator = Discriminator(
            in_nodes=discriminator_in_nodes).to(device)
        self.discriminator.apply(self.__weights_init)

        self.generator = Generator(out_nodes=generator_out_nodes).to(device)
        self.generator.apply(self.__weights_init)

        self.loss = nn.BCELoss()
        self.ps_model = ps_model
        self.ps_model_type = ps_model_type

    def get_generator(self):
        return self.generator

    def train_GAN(self, train_parameters, device):
        epochs = train_parameters["epochs"]
        train_set = train_parameters["train_set"]
        lr = train_parameters["lr"]
        shuffle = train_parameters["shuffle"]
        batch_size = train_parameters["batch_size"]
        BETA = train_parameters["BETA"]

        data_loader_train = torch.utils.data.DataLoader(train_set,
                                                        batch_size=batch_size,
                                                        shuffle=shuffle)

        g_optimizer = optim.Adam(self.generator.parameters(), lr=lr)
        d_optimizer = optim.Adam(self.discriminator.parameters(), lr=lr)

        for epoch in range(epochs):
            epoch += 1

            total_G_loss = 0
            total_D_loss = 0
            total_prop_loss = 0
            total_d_pred_real = 0
            total_d_pred_fake = 0

            for batch in data_loader_train:
                covariates_X_control, ps_score_control, y_f = batch
                covariates_X_control = covariates_X_control.to(device)
                covariates_X_control_size = covariates_X_control.size(0)
                ps_score_control = ps_score_control.squeeze().to(device)

                # 1. Train Discriminator
                real_data = covariates_X_control

                # Generate fake data
                fake_data = self.generator(
                    self.__noise(covariates_X_control_size)).detach()
                # Train D
                d_error, d_pred_real, d_pred_fake = self.__train_discriminator(
                    d_optimizer, real_data, fake_data)
                total_D_loss += d_error
                total_d_pred_real += d_pred_real
                total_d_pred_fake += d_pred_fake

                # 2. Train Generator
                # Generate fake data
                fake_data = self.generator(
                    self.__noise(covariates_X_control_size))
                # Train G
                error_g, prop_loss = self.__train_generator(
                    g_optimizer, fake_data, BETA, ps_score_control, device)
                total_G_loss += error_g
                total_prop_loss += prop_loss

            if epoch % 1000 == 0:
                print(
                    "Epoch: {0}, D_loss: {1}, D_score_real: {2}, D_score_Fake: {3}, G_loss: {4}, "
                    "Prop_loss: {5}".format(epoch, total_D_loss,
                                            total_d_pred_real,
                                            total_d_pred_fake, total_G_loss,
                                            total_prop_loss))

    def eval_GAN(self, eval_size, device):
        treated_g = self.generator(self.__noise(eval_size))
        ps_score_list_treated = self.__get_propensity_score(treated_g, device)
        return treated_g, ps_score_list_treated

    def __cal_propensity_loss(self, ps_score_control, gen_treated, device):
        ps_score_list_treated = self.__get_propensity_score(
            gen_treated, device)

        ps_score_treated = torch.tensor(ps_score_list_treated).to(device)
        ps_score_control = ps_score_control.to(device)
        prop_loss = torch.sum((torch.sub(ps_score_treated.float(),
                                         ps_score_control.float()))**2)
        return prop_loss

    def __get_propensity_score(self, gen_treated, device):
        if self.ps_model_type == Constants.PS_MODEL_NN:
            return self.__get_propensity_score_NN(gen_treated, device)
        else:
            return self.__get_propensity_score_LR(gen_treated)

    def __get_propensity_score_LR(self, gen_treated):
        ps_score_list_treated = self.ps_model.predict_proba(
            gen_treated.cpu().detach().numpy())[:, -1].tolist()
        return ps_score_list_treated

    def __get_propensity_score_NN(self, gen_treated, device):
        # Assign Treated
        Y = np.ones(gen_treated.size(0))
        eval_set = Utils.convert_to_tensor(gen_treated.cpu().detach().numpy(),
                                           Y)
        ps_eval_parameters_NN = {"eval_set": eval_set}
        ps_score_list_treated = self.ps_model.eval(ps_eval_parameters_NN,
                                                   device,
                                                   eval_from_GAN=True)
        return ps_score_list_treated

    @staticmethod
    def __noise(_size):
        n = Variable(
            torch.normal(mean=0,
                         std=1,
                         size=(_size, Constants.GAN_GENERATOR_IN_NODES)))
        # print(n.size())
        if torch.cuda.is_available(): return n.cuda()
        return n

    @staticmethod
    def __weights_init(m):
        if type(m) == nn.Linear:
            nn.init.xavier_uniform_(m.weight)
            torch.nn.init.zeros_(m.bias)

    @staticmethod
    def __real_data_target(size):
        data = Variable(torch.ones(size, 1))
        if torch.cuda.is_available(): return data.cuda()
        return data

    @staticmethod
    def __fake_data_target(size):
        data = Variable(torch.zeros(size, 1))
        if torch.cuda.is_available(): return data.cuda()
        return data

    def __train_discriminator(self, optimizer, real_data, fake_data):
        # Reset gradients
        optimizer.zero_grad()

        # 1.1 Train on Real Data
        prediction_real = self.discriminator(real_data)
        real_score = torch.mean(prediction_real).item()

        # Calculate error and back propagate
        error_real = self.loss(prediction_real,
                               self.__real_data_target(real_data.size(0)))
        error_real.backward()

        # 1.2 Train on Fake Data
        prediction_fake = self.discriminator(fake_data)
        fake_score = torch.mean(prediction_fake).item()
        # Calculate error and backpropagate
        error_fake = self.loss(prediction_fake,
                               self.__fake_data_target(real_data.size(0)))
        error_fake.backward()

        # 1.3 Update weights with gradients
        optimizer.step()
        loss_D = error_real + error_fake
        # Return error
        return loss_D.item(), real_score, fake_score

    def __train_generator(self, optimizer, fake_data, BETA, ps_score_control,
                          device):
        # 2. Train Generator
        # Reset gradients
        optimizer.zero_grad()
        # Sample noise and generate fake data
        predicted_D = self.discriminator(fake_data)
        # Calculate error and back propagate
        ps_score_control = ps_score_control.to(device)
        fake_data = fake_data.to(device)
        error_g = self.loss(predicted_D,
                            self.__real_data_target(predicted_D.size(0)))
        prop_loss = self.__cal_propensity_loss(ps_score_control, fake_data,
                                               device)
        error = error_g + (BETA * prop_loss)
        error.backward()
        # Update weights with gradients
        optimizer.step()
        # Return error
        return error_g.item(), prop_loss.item()
示例#14
0
        milestones=[lr_change1, lr_change2, lr_change3, lr_change4],
        gamma=0.1)

    #optimizer4nn = nn.DataParallel(optimizer4nn,device_ids=gpu_ids)

    ########################################################## GAN ################################################################
    if config.re_type_gan:
        lr_p = pow(20, 1.0 / lr_change1)
        lr_d = lambda x_step: (lr_p**x_step) / (int(
            x_step > lr_change1) * 4 + 1) / (int(x_step > lr_change2) * 4 + 1)
        discriminator_activation_function = torch.relu
        d_hidden_size = 1024
        d_output_size = 1
        sgd_momentum = 0.9
        D = Discriminator(input_size=99,
                          hidden_size=d_hidden_size,
                          output_size=d_output_size,
                          f=discriminator_activation_function).cuda()
        D = torch.nn.DataParallel(D, device_ids=gpu_ids)
        d_optimizer = torch.optim.Adam(D.parameters(),
                                       lr=config.d_learning_rate,
                                       weight_decay=5e-4)
        #scheduler_d_optimizer = optim.lr_scheduler.MultiStepLR(d_optimizer, milestones=[lr_change1,lr_change2], gamma=0.2)
        scheduler_d_optimizer = optim.lr_scheduler.LambdaLR(d_optimizer,
                                                            lr_lambda=lr_d)
        criterion_B = torch.nn.BCELoss().cuda()
        criterion_B = torch.nn.DataParallel(criterion_B, device_ids=gpu_ids)
    ############################################################################## log ########################################

    iter_num = 0
    train_loss = 0
    correct = 0
示例#15
0
from glob import glob
from painter import Visualizer
import cv2
import os

# Model Training
PATH = 'X:\Upwork\projects\SRGAN\PreprocessedData\192_96'  # only use images with shape 192 by 96 for training
files = glob.glob(
    PATH + '/*.jpg'
) * 3  # data augmentation, same image with different brightness and contrast
np.random.shuffle(files)
train, val = files[:int(len(files) * 0.8)], files[int(len(files) * 0.8):]
loader = DataLoader()
trainData = DataLoader().load(train, batchSize=16)
valData = DataLoader().load(val, batchSize=64)
discriminator = Discriminator()
extractor = buildExtractor()
generator = RRDBNet(blockNum=10)


# loss function as in the SRGAN paper
def contentLoss(y_true, y_pred):
    featurePred = extractor(y_pred)
    feature = extractor(y_true)
    mae = tf.reduce_mean(tfk.losses.mae(y_true, y_pred))
    return 0.1 * tf.reduce_mean(tfk.losses.mse(featurePred, feature)) + mae


optimizer = tfk.optimizers.Adam(learning_rate=1e-3)
generator.compile(loss=contentLoss, optimizer=optimizer, metrics=[psnr, ssim])
elif dataset == 'fake':
    dataset = dset.FakeData(image_size=(3, opt.imageSize, opt.imageSize),
                                transform=transforms.ToTensor())
    nc=3

assert dataset


print('Saving Features')
if not os.path.exists(feature_file):
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size,
                    shuffle=True, num_workers=opt.num_workers)

    
    netD = Discriminator(opt.ndf, opt.nc, opt.filters, opt.strides, opt.padding)
    netD.cuda()
    
    epoch = 10
    netD.load_state_dict(torch.load(opt.model_path + 'netD_epoch_{}.pth'.format(epoch)))
    
    print(netD)
    netD.eval()
    n_features = 4096 # 1024x2x2
    save_features(dataloader, opt.batch_size, n_features, feature_file)

print('Load Features')
data = np.loadtxt(feature_file, dtype=np.float16)

features, labels = data[:, : -1], data[:, -1: ]
shape = features.shape
示例#17
0
def main():
    tf.random.set_seed(22)
    np.random.seed(22)
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    assert tf.__version__.startswith('2.')

    # 设置超参数
    z_dim = 10
    epoch = 3000000
    batch_size = 512
    learning_rate = 0.002
    is_training = True

    # 数据集加载,每一张图片路径集
    img_path = glob.glob(r'D:\PyCharm Projects\CarNum-CNN\data\faces\*.jpg')

    dataset, img_shape, _ = make_anime_dataset(img_path, batch_size)
    # print(dataset, img_shape)
    # sample = next(iter(dataset))
    # print(sample)

    # 无线采样
    dataset = dataset.repeat()
    db_iter = iter(dataset)

    # 导入生成器模型和判断器模型
    genertor = Generator()
    genertor.build(input_shape=(None, z_dim))
    discriminator = Discriminator()
    discriminator.build(input_shape=(None, 64, 64, 3))

    # 分别设置两个优化器
    g_optimizer = tf.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)
    d_optimizer = tf.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)

    for epoch in range(epoch):

        batch_z = tf.random.uniform([batch_size, z_dim], minval=-1., maxval=1.)
        batch_x = next(db_iter)

        # train D
        with tf.GradientTape() as tape:
            d_loss = d_loss_fn(genertor, discriminator, batch_z, batch_x,
                               is_training)

        grads = tape.gradient(d_loss, discriminator.trainable_variables)
        d_optimizer.apply_gradients(
            zip(grads, discriminator.trainable_variables))

        # train G
        with tf.GradientTape() as tape:
            g_loss = g_loss_fn(genertor, discriminator, batch_z, is_training)

        grads = tape.gradient(g_loss, genertor.trainable_variables)
        g_optimizer.apply_gradients(zip(grads, genertor.trainable_variables))

        # 打印
        if epoch % 100 == 0:
            print(epoch, "d_loss:", float(d_loss), "g_loss:", float(g_loss))

            z = tf.random.uniform([100, z_dim])
            fake_image = genertor(z, training=False)
            img_path = os.path.join('./gan_images', 'gan-%d.png' % epoch)
            save_result(fake_image.numpy(), 10, img_path, color_mode='P')
示例#18
0
def train():

    input_channels = 3
    lr = 0.01
    momentum = 0.5
    epochs = 200
    lambda_pixel = 300
    #gen = Gen(100)
    gen_model = Generator(input_channels, input_channels)
    disc_model = Discriminator(input_channels, 2)
    #optimizer_G = optim.Adam(gen_model .parameters(), lr=lr)
    #optimizer_D = optim.Adam(disc_model .parameters(), lr=lr)
    optimizer_G = optim.SGD(gen_model.parameters(), lr=lr, momentum=momentum)
    optimizer_D = optim.SGD(disc_model.parameters(), lr=lr, momentum=momentum)
    #piexl_loss = torch.nn.L1Loss()
    piexl_loss = nn.L1Loss()
    disc_loss = nn.CrossEntropyLoss()
    if use_cuda:
        gen_model = gen_model.cuda()
        disc_model = disc_model.cuda()
        piexl_loss = piexl_loss.cuda()
        disc_loss = disc_loss.cuda()
    # prepare fake_real label
    real_lines = open('real_face.txt', 'r').readlines()[:1000]
    cartoon_lines = open('cartoon_face.txt', 'r').readlines()[:1000]
    train_loader = GenertorData(real_lines, cartoon_lines, batch_size,
                                input_size)
    epoch_g_loss = []
    epoch_d_loss = []
    fw_log = open('log.txt', 'w')
    for epoch in range(epochs):
        train_loss_G = 0
        train_loss_D = 0
        #for batch_idx, (data, target) in enumerate(train_loader):
        for batch_idx in range(len(train_loader)):
            data, target = train_loader[batch_idx]
            data, target = data.to(device), target.to(device)
            real_target, fake_target = generate_label(data.size(0))
            # train generators
            optimizer_G.zero_grad()
            fake = gen_model(data)
            real_pred = disc_model(target)
            fake_pred = disc_model(fake)
            disc_loss_real = disc_loss(real_pred, real_target)
            disc_loss_fake = disc_loss(fake_pred, fake_target)
            loss_D = disc_loss_real + disc_loss_fake
            loss_G = piexl_loss(target, fake)
            loss_G = loss_D + lambda_pixel * loss_G
            loss_G.backward()
            optimizer_G.step()
            train_loss_G += loss_G.item()

            # train Discriminator
            if (batch_idx / 50) == epoch % (len(train_loader) / 50):
                # if loss_D > 0.05:
                optimizer_D.zero_grad()
                fake = gen_model(data)
                #print(fake.size())
                real_pred = disc_model(target)
                fake_pred = disc_model(fake)
                disc_loss_real = disc_loss(real_pred, real_target)
                disc_loss_fake = disc_loss(fake_pred, fake_target)
                loss_D = disc_loss_real + disc_loss_fake
                loss_D.backward()
                optimizer_D.step()
            train_loss_D = loss_D.item()
            if batch_idx % 50 == 0:
                print("GAN train Epochs %d %d/%d G_loss %.6f D_loss %.6f" %
                      (epoch, batch_idx, len(train_loader), loss_G.item(),
                       train_loss_D))

        epoch_g_loss.append(loss_G.item())
        epoch_d_loss.append(train_loss_D)
        torch.save(
            gen_model.state_dict(),
            "model/gen_cartoon_model_epoch_" + str(epoch) + '_gloss' +
            str(loss_G.item())[:6] + '_d_loss' + str(train_loss_D)[:6] + ".pt")
        fw_log.write(str(epoch) + ' ' + str(epoch_g_loss) + '\n')
        fw_log.write(str(epoch) + ' ' + str(epoch_d_loss) + '\n')
        draw(epoch_g_loss, epoch_d_loss)
示例#19
0
    def train_GAN(self, data_loader_train, device):
        lr = 0.0002
        netG = Generator().to(device)
        netD = Discriminator().to(device)

        # Initialize BCELoss function
        criterion = nn.BCELoss()

        # Create batch of latent vectors that we will use to visualize
        #  the progression of the generator
        nz = 100
        fixed_noise = torch.randn(64, nz, 1, 1, device=device)
        beta1 = 0.5

        # Establish convention for real and fake labels during training
        real_label = 1.
        fake_label = 0.

        # Setup Adam optimizers for both G and D
        optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
        optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))

        # Training Loop

        # Lists to keep track of progress
        img_list = []
        G_losses = []
        D_losses = []
        iters = 0
        num_epochs = 150

        print("Starting Training Loop...")
        # For each epoch
        for epoch in range(num_epochs):
            # For each batch in the dataloader
            with tqdm(total=len(train_data_loader)) as t:
                for i, data in enumerate(data_loader_train, 0):

                    ############################
                    # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
                    ###########################
                    ## Train with all-real batch
                    netD.zero_grad()
                    # Format batch
                    real_cpu = data[0].to(device)
                    b_size = real_cpu.size(0)
                    label = torch.full((b_size, ),
                                       real_label,
                                       dtype=torch.float,
                                       device=device)
                    # Forward pass real batch through D
                    output = netD(real_cpu).view(-1)
                    # Calculate loss on all-real batch
                    errD_real = criterion(output, label)
                    # Calculate gradients for D in backward pass
                    errD_real.backward()
                    D_x = output.mean().item()

                    ## Train with all-fake batch
                    # Generate batch of latent vectors
                    noise = torch.randn(b_size, nz, 1, 1, device=device)
                    # Generate fake image batch with G
                    fake = netG(noise)
                    label.fill_(fake_label)
                    # Classify all fake batch with D
                    output = netD(fake.detach()).view(-1)
                    # Calculate D's loss on the all-fake batch
                    errD_fake = criterion(output, label)
                    # Calculate the gradients for this batch
                    errD_fake.backward()
                    D_G_z1 = output.mean().item()
                    # Add the gradients from the all-real and all-fake batches
                    errD = errD_real + errD_fake
                    # Update D
                    optimizerD.step()

                    ############################
                    # (2) Update G network: maximize log(D(G(z)))
                    ###########################
                    netG.zero_grad()
                    label.fill_(
                        real_label)  # fake labels are real for generator cost
                    # Since we just updated D, perform another forward pass of all-fake batch through D
                    output = netD(fake).view(-1)
                    # Calculate G's loss based on this output
                    errG = criterion(output, label)
                    # Calculate gradients for G
                    errG.backward()
                    D_G_z2 = output.mean().item()
                    # Update G
                    optimizerG.step()

                    # Output training stats
                    t.set_postfix(epoch='{0}'.format(epoch),
                                  loss_g='{:05.3f}'.format(errG.item()),
                                  loss_d='{:05.3f}'.format(errD.item()))
                    t.update()
                    # if i % 50 == 0:
                    #     print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
                    #           % (epoch, num_epochs, i, len(data_loader_train),
                    #              errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))

                    # Save Losses for plotting later
                    G_losses.append(errG.item())
                    D_losses.append(errD.item())

                    # Check how the generator is doing by saving G's output on fixed_noise
                    if (iters % 10
                            == 0) or ((epoch == num_epochs - 1) and
                                      (i == len(data_loader_train) - 1)):
                        with torch.no_grad():
                            fake = netG(fixed_noise).detach().cpu()
                        img_list.append(
                            vutils.make_grid(fake, padding=2, normalize=True))

                    iters += 1

        return G_losses, D_losses, img_list