def plot_deep(model, xlim=None, Nsamples=0): if model.layerX.input_dim==1 and model.layerY.output_dim==1: fig, ax1 = plt.subplots(1) if xlim is None: Xnew, xmin, xmax = x_frame1D(model.layerX.X, resolution=200) else: xmin = xlim[0] xmax = xlim[1] Xnew = np.linspace(xmin, xmax, 200)[:, None] Xnew = np.linspace(xmin,xmax,200)[:,None] s = model.predict_sampling(Xnew, 1000) yTest = model.predict_means(Xnew)[0] H, xedges, yedges = np.histogram2d(np.repeat(Xnew.T, 1000, 0).flatten(), s.flatten(), bins=[Xnew.flatten(), np.linspace(s.min(),s.max(),50)]) ax1.imshow(H.T, extent=[xedges.min(), xedges.max(), yedges.min(), yedges.max()], cmap=plt.cm.Blues, interpolation='nearest', origin='lower', aspect='auto') ax1.plot(model.layerX.X, model.layerY.Y, 'kx', mew=1.3) ax1.plot(Xnew.flatten(), yTest.flatten()) ax1.set_ylim(yedges.min(), yedges.max()) ax1.set_xlim(xmin, xmax) for n in range(Nsamples): Y = model.posterior_sample(Xnew) ax1.plot(Xnew, Y, 'r', lw=1.4)
def plot_hidden_layer(layer): if layer.input_dim == 1: fig = plt.figure() ax1 = fig.add_axes([0.2, 0.2, 0.7, 0.7]) Xnew, xmin, xmax = x_frame1D(np.vstack( (layer.Z * 1, layer.q_of_X_in.mean * 1)), resolution=200) sausage_plot(layer, Xnew, ax1) errorbars(layer, ax1) plt.setp(ax1.get_xticklabels(), visible=False) plt.setp(ax1.get_yticklabels(), visible=False) #do the gaussians for the input ax2 = fig.add_axes([0.2, 0.1, 0.7, 0.1], sharex=ax1) ax2.set_yticks([]) plot_gaussians(layer.q_of_X_in, ax2, (xmin, xmax)) ax2.set_xlim(xmin, xmax) #ax2.set_ylim(ax2.get_ylim()[::-1]) ax3 = fig.add_axes([0.1, 0.2, 0.1, 0.7], sharey=ax1) plot_gaussians(layer.q_of_X_out, ax3, ax1.get_ylim(), vertical=True) ax3.set_xticks([]) ax3.set_xlim(ax3.get_xlim()[::-1])
def plot_deep(model, xlim=None, Nsamples=0): if model.layerX.input_dim == 1 and model.layerY.output_dim == 1: fig, ax1 = plt.subplots(1) if xlim is None: Xnew, xmin, xmax = x_frame1D(model.layerX.X, resolution=200) else: xmin = xlim[0] xmax = xlim[1] Xnew = np.linspace(xmin, xmax, 200)[:, None] Xnew = np.linspace(xmin, xmax, 200)[:, None] s = model.predict_sampling(Xnew, 1000) yTest = model.predict_means(Xnew)[0] H, xedges, yedges = np.histogram2d( np.repeat(Xnew.T, 1000, 0).flatten(), s.flatten(), bins=[Xnew.flatten(), np.linspace(s.min(), s.max(), 50)]) ax1.imshow( H.T, extent=[xedges.min(), xedges.max(), yedges.min(), yedges.max()], cmap=plt.cm.Blues, interpolation='nearest', origin='lower', aspect='auto') ax1.plot(model.layerX.X, model.layerY.Y, 'kx', mew=1.3) ax1.plot(Xnew.flatten(), yTest.flatten()) ax1.set_ylim(yedges.min(), yedges.max()) ax1.set_xlim(xmin, xmax) for n in range(Nsamples): Y = model.posterior_sample(Xnew) ax1.plot(Xnew, Y, 'r', lw=1.4)
def plot(self, plot_limits=None, levels=20, samples=0, fignum=None, ax=None, resolution=None, plot_raw=False, plot_filter=False, linecol=Tango.colorsHex['darkBlue'], fillcol=Tango.colorsHex['lightBlue']): # Deal with optional parameters if ax is None: fig = pb.figure(num=fignum) ax = fig.add_subplot(111) # Define the frame on which to plot resolution = resolution or 200 Xgrid, xmin, xmax = x_frame1D(self.X, plot_limits=plot_limits) # Make a prediction on the frame and plot it if plot_raw: m, v = self.predict_raw(Xgrid, filteronly=plot_filter) lower = m - 2 * np.sqrt(v) upper = m + 2 * np.sqrt(v) Y = self.Y else: m, v, lower, upper = self.predict(Xgrid, filteronly=plot_filter) Y = self.Y # Plot the values gpplot(Xgrid, m, lower, upper, axes=ax, edgecol=linecol, fillcol=fillcol) ax.plot(self.X, self.Y, 'kx', mew=1.5) # Optionally plot some samples if samples: if plot_raw: Ysim = self.posterior_samples_f(Xgrid, samples) else: Ysim = self.posterior_samples(Xgrid, samples) for yi in Ysim.T: ax.plot(Xgrid, yi, Tango.colorsHex['darkBlue'], linewidth=0.25) # Set the limits of the plot to some sensible values ymin, ymax = min(np.append(Y.flatten(), lower.flatten())), max( np.append(Y.flatten(), upper.flatten())) ymin, ymax = ymin - 0.1 * (ymax - ymin), ymax + 0.1 * (ymax - ymin) ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax)
def plot_gaussians(q, ax,limits=None, vertical=False, color='k'): if limits is None: Xnew, xmin, xmax = x_frame1D(q.mean, resolution=2000) else: xmin, xmax = limits Xnew = np.linspace(xmin, xmax, 2000)[:,None] #compute Gaussian densities log_density = -0.5*np.log(2*np.pi) -0.5*np.log(q.variance) -0.5*(q.mean-Xnew.T)**2/q.variance density = np.exp(log_density) if vertical: [ax.plot(d, Xnew[:,0], color, linewidth=1.) for d in density] [ax.fill(d, Xnew[:,0], color=color, linewidth=0., alpha=0.2) for d in density] else: ax.plot(Xnew, density.T, color, linewidth=1.) ax.fill(Xnew, density.T, color=color, linewidth=0., alpha=0.2)
def plot_output_layer(layer): if layer.input_dim == 1: fig = plt.figure() ax1 = fig.add_axes([0.1, 0.2, 0.8, 0.7]) Xnew, xmin, xmax = x_frame1D(layer.Z, resolution=200) sausage_plot(layer, Xnew, ax1) errorbars(layer, ax1) plt.setp(ax1.get_xticklabels(), visible=False) #plot the data ax1.plot(layer.q_of_X_in.mean * 1., layer.Y, 'kx', mew=2, ms=9) #do the gaussians for the input ax2 = fig.add_axes([0.1, 0.1, 0.8, 0.1], sharex=ax1) ax2.set_yticks([]) plot_gaussians(layer.q_of_X_in, ax2, (xmin, xmax)) ax2.set_xlim(xmin, xmax)
def plot_output_layer(layer): if layer.input_dim==1: fig = plt.figure() ax1 = fig.add_axes([0.1, 0.2, 0.8, 0.7]) Xnew, xmin, xmax = x_frame1D(layer.Z, resolution=200) sausage_plot(layer, Xnew, ax1) errorbars(layer, ax1) plt.setp(ax1.get_xticklabels(), visible=False) #plot the data ax1.plot(layer.q_of_X_in.mean*1., layer.Y, 'kx', mew=2, ms=9 ) #do the gaussians for the input ax2 = fig.add_axes([0.1, 0.1, 0.8, 0.1], sharex=ax1) ax2.set_yticks([]) plot_gaussians(layer.q_of_X_in, ax2, (xmin, xmax)) ax2.set_xlim(xmin, xmax)
def plot_gaussians(q, ax, limits=None, vertical=False, color='k'): if limits is None: Xnew, xmin, xmax = x_frame1D(q.mean, resolution=2000) else: xmin, xmax = limits Xnew = np.linspace(xmin, xmax, 2000)[:, None] #compute Gaussian densities log_density = -0.5 * np.log(2 * np.pi) - 0.5 * np.log( q.variance) - 0.5 * (q.mean - Xnew.T)**2 / q.variance density = np.exp(log_density) if vertical: [ax.plot(d, Xnew[:, 0], color, linewidth=1.) for d in density] [ ax.fill(d, Xnew[:, 0], color=color, linewidth=0., alpha=0.2) for d in density ] else: ax.plot(Xnew, density.T, color, linewidth=1.) ax.fill(Xnew, density.T, color=color, linewidth=0., alpha=0.2)
def plot_input_layer(layer): if layer.input_dim == 1: fig = plt.figure() ax1 = fig.add_axes([0.2, 0.2, 0.7, 0.7]) Xnew, xmin, xmax = x_frame1D(layer.Z, resolution=200) sausage_plot(layer, Xnew, ax1) errorbars(layer, ax1) plt.setp(ax1.get_xticklabels(), visible=False) plt.setp(ax1.get_yticklabels(), visible=False) #do crosses for the input ax2 = fig.add_axes([0.2, 0.1, 0.7, 0.1], sharex=ax1) ax2.set_yticks([]) ax2.plot(layer.X * 1, layer.X * 0, 'kx', mew=2., ms=9) ax2.set_xlim(xmin, xmax) ax3 = fig.add_axes([0.1, 0.2, 0.1, 0.7], sharey=ax1) plot_gaussians(layer.q_of_X_out, ax3, vertical=True) ax3.set_xticks([]) ax3.set_xlim(ax3.get_xlim()[::-1])
def plot_input_layer(layer): if layer.input_dim==1: fig = plt.figure() ax1 = fig.add_axes([0.2, 0.2, 0.7, 0.7]) Xnew, xmin, xmax = x_frame1D(layer.Z, resolution=200) sausage_plot(layer, Xnew, ax1) errorbars(layer, ax1) plt.setp(ax1.get_xticklabels(), visible=False) plt.setp(ax1.get_yticklabels(), visible=False) #do crosses for the input ax2 = fig.add_axes([0.2, 0.1, 0.7, 0.1], sharex=ax1) ax2.set_yticks([]) ax2.plot(layer.X*1, layer.X*0, 'kx', mew=2., ms=9) ax2.set_xlim(xmin, xmax) ax3 = fig.add_axes([0.1, 0.2, 0.1, 0.7], sharey=ax1) plot_gaussians(layer.q_of_X_out, ax3,vertical=True) ax3.set_xticks([]) ax3.set_xlim(ax3.get_xlim()[::-1])
def plot_hidden_layer(layer): if layer.input_dim==1: fig = plt.figure() ax1 = fig.add_axes([0.2, 0.2, 0.7, 0.7]) Xnew, xmin, xmax = x_frame1D(np.vstack((layer.Z*1, layer.q_of_X_in.mean*1)), resolution=200) sausage_plot(layer, Xnew, ax1) errorbars(layer, ax1) plt.setp(ax1.get_xticklabels(), visible=False) plt.setp(ax1.get_yticklabels(), visible=False) #do the gaussians for the input ax2 = fig.add_axes([0.2, 0.1, 0.7, 0.1], sharex=ax1) ax2.set_yticks([]) plot_gaussians(layer.q_of_X_in, ax2, (xmin, xmax)) ax2.set_xlim(xmin, xmax) #ax2.set_ylim(ax2.get_ylim()[::-1]) ax3 = fig.add_axes([0.1, 0.2, 0.1, 0.7], sharey=ax1) plot_gaussians(layer.q_of_X_out, ax3, ax1.get_ylim(), vertical=True) ax3.set_xticks([]) ax3.set_xlim(ax3.get_xlim()[::-1])
def plot_fit(model, plot_limits=None, which_data_rows='all', which_data_ycols='all', fixed_inputs=[], levels=20, samples=0, fignum=None, ax=None, resolution=None, plot_raw=False, linecol='darkBlue',fillcol='lightBlue', Y_metadata=None, data_symbol='kx'): """ Plot the posterior of the GP. - In one dimension, the function is plotted with a shaded region identifying two standard deviations. - In two dimsensions, a contour-plot shows the mean predicted function - In higher dimensions, use fixed_inputs to plot the GP with some of the inputs fixed. Can plot only part of the data and part of the posterior functions using which_data_rowsm which_data_ycols. :param plot_limits: The limits of the plot. If 1D [xmin,xmax], if 2D [[xmin,ymin],[xmax,ymax]]. Defaluts to data limits :type plot_limits: np.array :param which_data_rows: which of the training data to plot (default all) :type which_data_rows: 'all' or a slice object to slice model.X, model.Y :param which_data_ycols: when the data has several columns (independant outputs), only plot these :type which_data_rows: 'all' or a list of integers :param fixed_inputs: a list of tuple [(i,v), (i,v)...], specifying that input index i should be set to value v. :type fixed_inputs: a list of tuples :param resolution: the number of intervals to sample the GP on. Defaults to 200 in 1D and 50 (a 50x50 grid) in 2D :type resolution: int :param levels: number of levels to plot in a contour plot. :type levels: int :param samples: the number of a posteriori samples to plot :type samples: int :param fignum: figure to plot on. :type fignum: figure number :param ax: axes to plot on. :type ax: axes handle :type output: integer (first output is 0) :param linecol: color of line to plot. :type linecol: :param fillcol: color of fill :param levels: for 2D plotting, the number of contour levels to use is ax is None, create a new figure """ #deal with optional arguments if which_data_rows == 'all': which_data_rows = slice(None) if which_data_ycols == 'all': which_data_ycols = np.arange(model.output_dim) #if len(which_data_ycols)==0: #raise ValueError('No data selected for plotting') if ax is None: fig = pb.figure(num=fignum) ax = fig.add_subplot(111) if hasattr(model, 'has_uncertain_inputs') and model.has_uncertain_inputs(): X = model.X.mean X_variance = model.X.variance else: X = model.X Y = model.Y if hasattr(model, 'Z'): Z = model.Z #work out what the inputs are for plotting (1D or 2D) fixed_dims = np.array([i for i,v in fixed_inputs]) free_dims = np.setdiff1d(np.arange(model.input_dim),fixed_dims) plots = {} #one dimensional plotting if len(free_dims) == 1: #define the frame on which to plot Xnew, xmin, xmax = x_frame1D(X[:,free_dims], plot_limits=plot_limits, resolution=resolution or 200) Xgrid = np.empty((Xnew.shape[0],model.input_dim)) Xgrid[:,free_dims] = Xnew for i,v in fixed_inputs: Xgrid[:,i] = v #make a prediction on the frame and plot it m, v = model.predict(Xgrid) lower = m - 2*np.sqrt(v) upper = m + 2*np.sqrt(v) for d in which_data_ycols: plots['gpplot'] = gpplot(Xnew, m[:, d], lower[:, d], upper[:, d], ax=ax, edgecol=linecol, fillcol=fillcol) plots['dataplot'] = ax.plot(X[which_data_rows,free_dims], Y[which_data_rows, d], data_symbol, mew=1.5) #optionally plot some samples if samples: #NOTE not tested with fixed_inputs Ysim = model.posterior_samples(Xgrid, samples) for yi in Ysim.T: plots['posterior_samples'] = ax.plot(Xnew, yi[:,None], Tango.colorsHex['darkBlue'], linewidth=0.25) #ax.plot(Xnew, yi[:,None], marker='x', linestyle='--',color=Tango.colorsHex['darkBlue']) #TODO apply this line for discrete outputs. #add error bars for uncertain (if input uncertainty is being modelled) if hasattr(model,"has_uncertain_inputs") and model.has_uncertain_inputs(): plots['xerrorbar'] = ax.errorbar(X[which_data_rows, free_dims].flatten(), Y[which_data_rows, which_data_ycols].flatten(), xerr=2 * np.sqrt(X_variance[which_data_rows, free_dims].flatten()), ecolor='k', fmt=None, elinewidth=.5, alpha=.5) #set the limits of the plot to some sensible values ymin, ymax = min(np.append(Y[which_data_rows, which_data_ycols].flatten(), lower)), max(np.append(Y[which_data_rows, which_data_ycols].flatten(), upper)) ymin, ymax = ymin - 0.1 * (ymax - ymin), ymax + 0.1 * (ymax - ymin) ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) #2D plotting elif len(free_dims) == 2: #define the frame for plotting on resolution = resolution or 50 Xnew, _, _, xmin, xmax = x_frame2D(X[:,free_dims], plot_limits, resolution) Xgrid = np.empty((Xnew.shape[0],model.input_dim)) Xgrid[:,free_dims] = Xnew for i,v in fixed_inputs: Xgrid[:,i] = v x, y = np.linspace(xmin[0], xmax[0], resolution), np.linspace(xmin[1], xmax[1], resolution) #predict on the frame and plot if plot_raw: m, _ = model.predict(Xgrid) else: if isinstance(model,GPCoregionalizedRegression) or isinstance(model,SparseGPCoregionalizedRegression): meta = {'output_index': Xgrid[:,-1:].astype(np.int)} else: meta = None m, v = model.predict(Xgrid, full_cov=False, Y_metadata=meta) for d in which_data_ycols: m_d = m[:,d].reshape(resolution, resolution).T plots['contour'] = ax.contour(x, y, m_d, levels, vmin=m.min(), vmax=m.max(), cmap=pb.cm.jet) if not plot_raw: plots['dataplot'] = ax.scatter(X[which_data_rows, free_dims[0]], X[which_data_rows, free_dims[1]], 40, Y[which_data_rows, d], cmap=pb.cm.jet, vmin=m.min(), vmax=m.max(), linewidth=0.) #set the limits of the plot to some sensible values ax.set_xlim(xmin[0], xmax[0]) ax.set_ylim(xmin[1], xmax[1]) if samples: warnings.warn("Samples are rather difficult to plot for 2D inputs...") #add inducing inputs (if a sparse model is used) if hasattr(model,"Z"): #Zu = model.Z[:,free_dims] * model._Xscale[:,free_dims] + model._Xoffset[:,free_dims] Zu = Z[:,free_dims] plots['inducing_inputs'] = ax.plot(Zu[:,free_dims[0]], Zu[:,free_dims[1]], 'wo') else: raise NotImplementedError, "Cannot define a frame with more than two input dimensions" return plots
def plot_fit(model, plot_limits=None, which_data_rows='all', which_data_ycols='all', fixed_inputs=[], levels=20, samples=0, fignum=None, ax=None, resolution=None, plot_raw=False, linecol='darkBlue', fillcol='lightBlue', Y_metadata=None, data_symbol='kx'): """ Plot the posterior of the GP. - In one dimension, the function is plotted with a shaded region identifying two standard deviations. - In two dimsensions, a contour-plot shows the mean predicted function - In higher dimensions, use fixed_inputs to plot the GP with some of the inputs fixed. Can plot only part of the data and part of the posterior functions using which_data_rowsm which_data_ycols. :param plot_limits: The limits of the plot. If 1D [xmin,xmax], if 2D [[xmin,ymin],[xmax,ymax]]. Defaluts to data limits :type plot_limits: np.array :param which_data_rows: which of the training data to plot (default all) :type which_data_rows: 'all' or a slice object to slice model.X, model.Y :param which_data_ycols: when the data has several columns (independant outputs), only plot these :type which_data_rows: 'all' or a list of integers :param fixed_inputs: a list of tuple [(i,v), (i,v)...], specifying that input index i should be set to value v. :type fixed_inputs: a list of tuples :param resolution: the number of intervals to sample the GP on. Defaults to 200 in 1D and 50 (a 50x50 grid) in 2D :type resolution: int :param levels: number of levels to plot in a contour plot. :type levels: int :param samples: the number of a posteriori samples to plot :type samples: int :param fignum: figure to plot on. :type fignum: figure number :param ax: axes to plot on. :type ax: axes handle :type output: integer (first output is 0) :param linecol: color of line to plot. :type linecol: :param fillcol: color of fill :param levels: for 2D plotting, the number of contour levels to use is ax is None, create a new figure """ #deal with optional arguments if which_data_rows == 'all': which_data_rows = slice(None) if which_data_ycols == 'all': which_data_ycols = np.arange(model.output_dim) #if len(which_data_ycols)==0: #raise ValueError('No data selected for plotting') if ax is None: fig = pb.figure(num=fignum) ax = fig.add_subplot(111) if hasattr(model, 'has_uncertain_inputs') and model.has_uncertain_inputs(): X = model.X.mean X_variance = model.X.variance else: X = model.X Y = model.Y if hasattr(model, 'Z'): Z = model.Z #work out what the inputs are for plotting (1D or 2D) fixed_dims = np.array([i for i, v in fixed_inputs]) free_dims = np.setdiff1d(np.arange(model.input_dim), fixed_dims) plots = {} #one dimensional plotting if len(free_dims) == 1: #define the frame on which to plot Xnew, xmin, xmax = x_frame1D(X[:, free_dims], plot_limits=plot_limits, resolution=resolution or 200) Xgrid = np.empty((Xnew.shape[0], model.input_dim)) Xgrid[:, free_dims] = Xnew for i, v in fixed_inputs: Xgrid[:, i] = v #make a prediction on the frame and plot it m, v = model.predict(Xgrid) lower = m - 2 * np.sqrt(v) upper = m + 2 * np.sqrt(v) for d in which_data_ycols: plots['gpplot'] = gpplot(Xnew, m[:, d], lower[:, d], upper[:, d], ax=ax, edgecol=linecol, fillcol=fillcol) plots['dataplot'] = ax.plot(X[which_data_rows, free_dims], Y[which_data_rows, d], data_symbol, mew=1.5) #optionally plot some samples if samples: #NOTE not tested with fixed_inputs Ysim = model.posterior_samples(Xgrid, samples) for yi in Ysim.T: plots['posterior_samples'] = ax.plot( Xnew, yi[:, None], Tango.colorsHex['darkBlue'], linewidth=0.25) #ax.plot(Xnew, yi[:,None], marker='x', linestyle='--',color=Tango.colorsHex['darkBlue']) #TODO apply this line for discrete outputs. #add error bars for uncertain (if input uncertainty is being modelled) if hasattr(model, "has_uncertain_inputs") and model.has_uncertain_inputs(): plots['xerrorbar'] = ax.errorbar( X[which_data_rows, free_dims].flatten(), Y[which_data_rows, which_data_ycols].flatten(), xerr=2 * np.sqrt(X_variance[which_data_rows, free_dims].flatten()), ecolor='k', fmt=None, elinewidth=.5, alpha=.5) #set the limits of the plot to some sensible values ymin, ymax = min( np.append(Y[which_data_rows, which_data_ycols].flatten(), lower)), max( np.append( Y[which_data_rows, which_data_ycols].flatten(), upper)) ymin, ymax = ymin - 0.1 * (ymax - ymin), ymax + 0.1 * (ymax - ymin) ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) #2D plotting elif len(free_dims) == 2: #define the frame for plotting on resolution = resolution or 50 Xnew, _, _, xmin, xmax = x_frame2D(X[:, free_dims], plot_limits, resolution) Xgrid = np.empty((Xnew.shape[0], model.input_dim)) Xgrid[:, free_dims] = Xnew for i, v in fixed_inputs: Xgrid[:, i] = v x, y = np.linspace(xmin[0], xmax[0], resolution), np.linspace(xmin[1], xmax[1], resolution) #predict on the frame and plot if plot_raw: m, _ = model.predict(Xgrid) else: if isinstance(model, GPCoregionalizedRegression) or isinstance( model, SparseGPCoregionalizedRegression): meta = {'output_index': Xgrid[:, -1:].astype(np.int)} else: meta = None m, v = model.predict(Xgrid, full_cov=False, Y_metadata=meta) for d in which_data_ycols: m_d = m[:, d].reshape(resolution, resolution).T plots['contour'] = ax.contour(x, y, m_d, levels, vmin=m.min(), vmax=m.max(), cmap=pb.cm.jet) if not plot_raw: plots['dataplot'] = ax.scatter(X[which_data_rows, free_dims[0]], X[which_data_rows, free_dims[1]], 40, Y[which_data_rows, d], cmap=pb.cm.jet, vmin=m.min(), vmax=m.max(), linewidth=0.) #set the limits of the plot to some sensible values ax.set_xlim(xmin[0], xmax[0]) ax.set_ylim(xmin[1], xmax[1]) if samples: warnings.warn( "Samples are rather difficult to plot for 2D inputs...") #add inducing inputs (if a sparse model is used) if hasattr(model, "Z"): #Zu = model.Z[:,free_dims] * model._Xscale[:,free_dims] + model._Xoffset[:,free_dims] Zu = Z[:, free_dims] plots['inducing_inputs'] = ax.plot(Zu[:, free_dims[0]], Zu[:, free_dims[1]], 'wo') else: raise NotImplementedError, "Cannot define a frame with more than two input dimensions" return plots