示例#1
0
文件: gSpline.py 项目: nmik/GRATools
 def plot(self, num_pointsx=100, num_pointsy=100, num_contours=75,
          logz=False, show=True):
     """Plot the spline.
     Args
     ----
     num_pointsx : int
         The number of x sampling points to be used to draw the spline.
     num_pointsy : int
         The number of y sampling points to be used to draw the spline.
     num_contours : int
         The number of contours for the color plot.
     show : bool, optional
         If True, `plt.show()` is called at the end, interrupting the flow.
     """
     from GRATools.utils.matplotlib_ import pyplot as plt 
     _x = numpy.logspace(self.xmin(), self.xmax(), num_pointsx)
     _y = numpy.logspace(self.ymin(), self.ymax(), num_pointsy)
     _x, _y = numpy.meshgrid(_x, _y)
     _z = self(_x, _y, grid=False)
     if logz:
         from matplotlib.colors import LogNorm
         _levels = numpy.logspace(-4, numpy.log10(_z.max()), num_contours)
         contour = plt.contourf(_x, _y, _z, levels=_levels, norm = LogNorm())
     else:
         contour = plt.contourf(_x, _y, _z, num_contours)
     bar = plt.colorbar()
     if self.xname is not None:
         plt.xlabel(self.xlabel())
     if self.yname is not None:
         plt.ylabel(self.ylabel())
     if self.zname is not None:
         bar.set_label(self.zlabel())
     if show:
         plt.show()
示例#2
0
文件: gSpline.py 项目: nmik/GRATools
 def plot(self, num_points=1000, overlay=False, logx=False, logy=False,
          scale=1., offset=0., show=True, **kwargs):
     """Plot the spline.
     Args
     ----
     num_points : int, optional
         The number of sampling points to be used to draw the spline.
     overlay : bool, optional
         If True, the original arrays passed to the spline are overlaid.
     show : bool, optional
         If True, `plt.show()` is called at the end, interrupting the flow.
     """
     from GRATools.utils.matplotlib_ import pyplot as plt
     if not logx:
         _x = numpy.linspace(self.xmin(), self.xmax(), num_points)
     else:
         _x = numpy.logspace(numpy.log10(self.xmin()),
                             numpy.log10(self.xmax()), num_points)
     _y = scale*self(_x) + offset
     if overlay:
         plt.plot(_x, _y, '-', self.x, self.y, 'o', **kwargs)
     else:
         plt.plot(_x, _y, '-', **kwargs)
     if self.xname is not None:
         plt.xlabel(self.xlabel())
     if self.yname is not None:
         plt.ylabel(self.ylabel())
     if logx:
         plt.gca().set_xscale('log')
     if logy:
         plt.gca().set_yscale('log')
     if show:
         plt.show()
示例#3
0
def get_psf(psf_file, show=False):
    """Get the PSF from the fits file created by gtpsf
    """
    hdu_list = pf.open(psf_file)
    _th = np.radians(hdu_list['THETA'].data.field('Theta'))
    _en = hdu_list['PSF'].data.field('ENERGY')
    _psf = hdu_list['PSF'].data.field('PSF')
    fmt = dict(yname='Theta', yunits='rad', xname='Energy',
               xunits='MeV', zname='PSF')
    psf_th_e = xInterpolatedBivariateSplineLinear(_en, _th, _psf, **fmt)
    hdu_list.close()
    if show == True:
        for e in _en:
            psf_th = psf_th_e.vslice(e)
            fmt = dict(xname='cos(th)', xunits='', yname='psf[cos(th)]',\
                           yunits='')
            _psfxsin = xInterpolatedUnivariateSplineLinear(psf_th.x, \
                                       psf_th.y*np.sin(psf_th.x), **fmt)
            plt.plot(np.degrees(psf_th.x), psf_th.y, label='%.2f'%e)
            print 'INT(E=%.2f) ='%e, 2*np.pi*_psfxsin.integral(0, \
                                                      np.amax(psf_th.x[:-2]))
        plt.yscale('log')
        plt.legend()
        plt.show()
    return psf_th_e
示例#4
0
def mkCl(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])

    logger.info('Starting Cl analysis...')
    e_min = data.E_MIN
    e_max = data.E_MAX
    in_label = 'fore'
    out_label = in_label
    mask_file = data.MASK_FILE

    cl_txt = open(os.path.join(GRATOOLS_OUT, '%s_polspicecls.txt' % out_label),
                  'w')
    for i, (emin, emax) in enumerate(zip(e_min, e_max)):
        logger.info('Considering bin %.2f - %.2f ...' % (emin, emax))
        mask_f = mask_file
        if type(mask_file) == list:
            mask_f = mask_file[i]
        cl_txt.write('ENERGY\t %.2f %.2f\n' % (emin, emax))
        l_max = 1000
        _l = np.arange(l_max)
        flux_map_name = in_label + '_%i-%i.fits' % (emin, emax)
        flux_map_f = os.path.join(GRATOOLS_OUT, 'output_fore/' + flux_map_name)
        if kwargs['show'] == True:
            hp.mollview(flux_map_masked.filled(),
                        title='fore map',
                        min=1e-7,
                        max=1e-4,
                        norm='log')
            plt.show()
        out_name = '%s_%i-%i' % (out_label, emin, emax)
        out_folder = os.path.join(GRATOOLS_OUT, 'output_pol')
        if not os.path.exists(out_folder):
            os.makedirs(out_folder)
        pol_dict = data.POLCEPICE_DICT
        for key in pol_dict:
            if key == 'clfile':
                pol_dict[key] = os.path.join(out_folder,
                                             '%s_cl.txt' % out_name)
            if key == 'cl_outmap_file':
                pol_dict[key] = os.path.join(out_folder,
                                             '%s_clraw.txt' % out_name)
            if key == 'covfileout':
                pol_dict[key] = os.path.join(out_folder,
                                             '%s_cov.fits' % out_name)
            if key == 'mapfile':
                pol_dict[key] = flux_map_f
            if key == 'maskfile':
                pol_dict[key] = mask_f
        config_file_name = 'pol_%s' % (out_name)
        _l, _cl, _cl_err = pol_cl_calculation(pol_dict, config_file_name)
        cl_txt.write('Cl\t%s\n'%str(list(_cl)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        cl_txt.write('Cl_ERR\t%s\n\n'%str(list(_cl_err)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.close()
    logger.info('Created %s' %
                (os.path.join(GRATOOLS_OUT, '%s_polspicecls.txt' % out_label)))
示例#5
0
def main():
    """Test module
    """
    plt.figure()
    leg, lab = ref_igrb_band()
    igrb, lab2 = ref_igrb_noFGsub()
    plt.xscale('log')
    plt.yscale('log')
    plt.legend([leg, igrb], [lab, lab2])
    plt.show()
示例#6
0
def main():
    """
    """
    cl_f = 'output/output_pol/mask_check_cl.txt'
    cov_f = 'output/output_pol/mask_check_cov.fits'
    l, cl = pol_cl_parse(cl_f)
    clerr = pol_cov_parse(cov_f)
    #plt.errorbar(l, cl, fmt='o', markersize=3, elinewidth=1, yerr=clerr)
    plt.plot(l, cl, 'o', markersize=3)
    plt.xscale('log')
    plt.yscale('log')
    #plt.ylim(-1e-15, 1e-15)
    plt.show()
示例#7
0
def main():
    """
    crbkg_PSF1_file =  os.path.join(GRATOOLS_CONFIG, 
                                    'ascii/p8r2_bkg_flux_t8.txt')
    crbkg_PSF1 = get_crbkg(crbkg_PSF1_file)
    crbkg_PSF1.plot(show=False)
    x = crbkg_PSF1.x
    xx = x**2
    print x
    y1 =  crbkg_PSF1.y
    crbkg_PSF2_file =  os.path.join(GRATOOLS_CONFIG, 
                                    'ascii/p8r2_bkg_flux_t16.txt')
    crbkg_PSF2 = get_crbkg(crbkg_PSF2_file)
    crbkg_PSF2.plot(show=False)
    y2 =  crbkg_PSF2(x)
    crbkg_PSF3_file =  os.path.join(GRATOOLS_CONFIG, 
                                    'ascii/p8r2_bkg_flux_t32.txt')
    crbkg_PSF3 = get_crbkg(crbkg_PSF3_file)
    crbkg_PSF3.plot(show=False)
    y3 =  crbkg_PSF2(x)
    y = (y1/x+y2/x+y3/x)*x
    print y
    plt.yscale('log')
    plt.xscale('log')
    plt.show()
    
    fore_files_list = [os.path.join(GRATOOLS_CONFIG, \
                                        'fits/gll_iem_v06_hp512_146647.fits'),
                       os.path.join(GRATOOLS_CONFIG, \
                                        'fits/gll_iem_v06_hp512_200561.fits'),
                       os.path.join(GRATOOLS_CONFIG, \
                                        'fits/gll_iem_v06_hp512_274296.fits'),
                       os.path.join(GRATOOLS_CONFIG, \
                                        'fits/gll_iem_v06_hp512_375138.fits'),
                       os.path.join(GRATOOLS_CONFIG, \
                                        'fits/gll_iem_v06_hp512_513056.fits'),
                       ]
    e_min, e_max = 524807.00, 575439.00
    get_foreground_integral_flux_map(fore_files_list, e_min, e_max)"""
    from scipy.optimize import curve_fit
    ClFORE_FILE = os.path.join(GRATOOLS_OUT, 'fore_polspicecls.txt')
    min1, emax1, clsfore = clfore_parse(ClFORE_FILE)
    l = np.arange(len(clsfore[0]))
    clsfore_spline = xInterpolatedUnivariateSplineLinear(l, clsfore[0])
    clsfore_spline.plot(show=False)
    plt.xscale('log')
    plt.yscale('log')
    plt.show()
示例#8
0
def mkForeCl(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])

    logger.info('Starting Cl analysis...')
    in_label = data.IN_LABEL
    out_label = data.OUT_LABEL
    binning_label = data.BINNING_LABEL
    from GRATools.utils.gFTools import get_cl_param
    cl_param_file = os.path.join(
        GRATOOLS_OUT, '%s_%s_parameters.txt' % (in_label, binning_label))
    _emin, _emax, _emean, _f, _ferr, _cn, _fsky = get_cl_param(cl_param_file)
    cl_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_forecls.txt' \
                                   %(out_label, binning_label)), 'w')
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        mask_file = data.MASK_FILE
        if type(mask_file) == list:
            mask_file = mask_file[i]
        mask = hp.read_map(mask_file)
        logger.info('Considering bin %.2f - %.2f ...' % (emin, emax))
        cl_txt.write('ENERGY\t %.2f %.2f %.2f\n' % (emin, emax, _emean[i]))
        l_max = 1000
        _l = np.arange(l_max)
        flux_map_name = in_label + '_fore_%i-%i.fits' % (emin, emax)
        flux_map = hp.read_map(os.path.join(GRATOOLS_OUT_FORE, flux_map_name))
        flux_map_masked = hp.ma(flux_map)
        flux_map_masked.mask = np.logical_not(mask)
        fsky = 1.-(len(np.where(flux_map_masked.filled() == hp.UNSEEN)[0])/\
                       float(len(flux_map)))
        if kwargs['show'] == True:
            hp.mollview(flux_map_masked.filled(),
                        title='f$_{sky}$ = %.3f' % fsky,
                        min=1e-7,
                        max=1e-4,
                        norm='log')
            plt.show()
        print 'fsky = ', fsky
        nside = hp.npix2nside(len(flux_map))
        wpix = hp.sphtfunc.pixwin(nside)[:l_max]
        _cl = hp.sphtfunc.anafast(flux_map_masked.filled(), lmax=l_max-1, \
                                      iter=5)
        _cl_fit = hp.sphtfunc.anafast(flux_map_masked.filled(), iter=4)
        cl_txt.write('Cl\t%s\n'%str(list(_cl)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.close()
    logger.info('Created %s'%(os.path.join(GRATOOLS_OUT, '%s_%s_forecls.txt' \
                                               %(out_label, binning_label))))
示例#9
0
文件: gDrawRef.py 项目: nmik/GRATools
def main():
    """Test module
    """
    leg, lab = ref_cp_band()
    plt.legend()
    plt.xscale('log')
    plt.yscale('log')
    plt.show()
    
    plt.figure()
    leg, lab = ref_igrb_band()
    igrb, lab2 = ref_igrb_noFGsub()
    plt.xscale('log')       
    plt.yscale('log')
    plt.legend([leg, igrb], [lab, lab2])
    plt.show()
示例#10
0
文件: mkforecl.py 项目: nmik/GRATools
def mkForeCl(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])

    logger.info('Starting Cl analysis...')
    in_label = data.IN_LABEL
    out_label = data.OUT_LABEL
    binning_label = data.BINNING_LABEL
    from GRATools.utils.gFTools import get_cl_param
    cl_param_file = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt'
                                 %(in_label, binning_label))
    _emin, _emax, _emean, _f, _ferr, _cn, _fsky = get_cl_param(cl_param_file)
    cl_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_forecls.txt' \
                                   %(out_label, binning_label)), 'w')
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        mask_file = data.MASK_FILE
        if type(mask_file) == list:
            mask_file = mask_file[i]
        mask = hp.read_map(mask_file)
        logger.info('Considering bin %.2f - %.2f ...'%(emin, emax))
        cl_txt.write('ENERGY\t %.2f %.2f %.2f\n'%(emin, emax, _emean[i]))
        l_max= 1000
        _l = np.arange(l_max)
        flux_map_name = in_label+'_fore_%i-%i.fits'%(emin, emax)
        flux_map = hp.read_map(os.path.join(GRATOOLS_OUT_FORE, flux_map_name))
        flux_map_masked = hp.ma(flux_map)
        flux_map_masked.mask = np.logical_not(mask)
        fsky = 1.-(len(np.where(flux_map_masked.filled() == hp.UNSEEN)[0])/\
                       float(len(flux_map)))
        if kwargs['show'] == True:
            hp.mollview(flux_map_masked.filled(), title='f$_{sky}$ = %.3f'%fsky,
                        min=1e-7, max=1e-4, norm='log')
            plt.show()
        print 'fsky = ', fsky
        nside = hp.npix2nside(len(flux_map))
        wpix = hp.sphtfunc.pixwin(nside)[:l_max]
        _cl = hp.sphtfunc.anafast(flux_map_masked.filled(), lmax=l_max-1, \
                                      iter=5)
        _cl_fit = hp.sphtfunc.anafast(flux_map_masked.filled(), iter=4)
        cl_txt.write('Cl\t%s\n'%str(list(_cl)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.close()
    logger.info('Created %s'%(os.path.join(GRATOOLS_OUT, '%s_%s_forecls.txt' \
                                               %(out_label, binning_label))))
示例#11
0
def remove_multipole(map_file_name, lmax=10):
    """Returns a map obtained from the one given and cleaned for monopole and
       dipole.
       
       map_file_name : str
          path and name of the map you want to clean for  monopole 
          and dipole.
       lmax : int
          maximum multiple number upto which perform the removal
    """
    map_file_name_clean = map_file_name.replace('.fits', '_multiclean.fits')
    flux_map = hp.read_map(map_file_name)
    alm = hp.sphtfunc.map2alm(flux_map)
    map_to_remove = hp.sphtfunc.alm2map(alm, hp.npix2nside(len(flux_map)))
    hp.mollview(map_to_remove)
    plt.show()
    new_flux_map = flux_map - map_to_remove
    hp.write_map(map_file_name_clean, new_flux_map)
    return map_file_name_clean
示例#12
0
 def plot(self,
          num_points=1000,
          overlay=False,
          logx=False,
          logy=False,
          scale=1.,
          offset=0.,
          show=True,
          **kwargs):
     """Plot the spline.
     Args
     ----
     num_points : int, optional
         The number of sampling points to be used to draw the spline.
     overlay : bool, optional
         If True, the original arrays passed to the spline are overlaid.
     show : bool, optional
         If True, `plt.show()` is called at the end, interrupting the flow.
     """
     from GRATools.utils.matplotlib_ import pyplot as plt
     if not logx:
         _x = numpy.linspace(self.xmin(), self.xmax(), num_points)
     else:
         _x = numpy.logspace(numpy.log10(self.xmin()),
                             numpy.log10(self.xmax()), num_points)
     _y = scale * self(_x) + offset
     if overlay:
         plt.plot(_x, _y, '-', self.x, self.y, 'o', **kwargs)
     else:
         plt.plot(_x, _y, '-', **kwargs)
     if self.xname is not None:
         plt.xlabel(self.xlabel())
     if self.yname is not None:
         plt.ylabel(self.ylabel())
     if logx:
         plt.gca().set_xscale('log')
     if logy:
         plt.gca().set_yscale('log')
     if show:
         plt.show()
示例#13
0
 def plot(self,
          num_pointsx=100,
          num_pointsy=100,
          num_contours=75,
          logz=False,
          show=True):
     """Plot the spline.
     Args
     ----
     num_pointsx : int
         The number of x sampling points to be used to draw the spline.
     num_pointsy : int
         The number of y sampling points to be used to draw the spline.
     num_contours : int
         The number of contours for the color plot.
     show : bool, optional
         If True, `plt.show()` is called at the end, interrupting the flow.
     """
     from GRATools.utils.matplotlib_ import pyplot as plt
     _x = numpy.linspace(self.xmin(), self.xmax(), num_pointsx)
     _y = numpy.linspace(self.ymin(), self.ymax(), num_pointsy)
     _x, _y = numpy.meshgrid(_x, _y)
     _z = self(_x, _y, grid=False)
     if logz:
         from matplotlib.colors import LogNorm
         _levels = numpy.logspace(-4, numpy.log10(_z.max()), num_contours)
         contour = plt.contourf(_x, _y, _z, levels=_levels, norm=LogNorm())
     else:
         contour = plt.contourf(_x, _y, _z, num_contours)
     bar = plt.colorbar()
     if self.xname is not None:
         plt.xlabel(self.xlabel())
     if self.yname is not None:
         plt.ylabel(self.ylabel())
     if self.zname is not None:
         bar.set_label(self.zlabel())
     if show:
         plt.show()
示例#14
0
def main():
    """Simple test unit
    """
    from GRATools.utils.gWindowFunc import get_psf_ref
    psf_ref_file = os.path.join(GRATOOLS_CONFIG, 'ascii/PSF_UCV_PSF1.txt')
    psf_ref = get_psf_ref(psf_ref_file)
    energy = np.array([
        743.73, 1340.69, 2208.67, 3692.56, 6416.93, 11151.34, 18370.95,
        30713.33, 53373.66, 92752.78, 152802.88, 255462.38, 443942.75
    ])
    psf_en = psf_ref(energy)
    psf_min, psf_max = psf_ref.y[5], psf_ref.y[-1]
    norm_min, norm_max = 1, 0.3
    norm = norm_min + psf_en*((norm_max - norm_min)/(psf_max - psf_min)) -\
        psf_min*((norm_max - norm_min)/(psf_max - psf_min))
    plt.title('Normalization Factor')
    plt.plot(energy, norm, 'ro--', ms=5, alpha=0.75)
    #plt.plot((1e-12, 1e-5), (2, 2), '-', color='silver', linewidth=1.0)
    plt.xlabel('Energy [MeV]')
    plt.ylabel('Normalization factor')
    plt.yscale('log')
    plt.xscale('log')
    plt.ylim(0.09, 2)
    plt.show()

    nside = 512
    SRC_CATALOG_FILE = os.path.join(FT_DATA_FOLDER, 'catalogs/gll_psc_v16.fit')
    bad_pix = mask_src_weighted(SRC_CATALOG_FILE, 10000, nside)
    bad_pix += mask_gp(30, nside)
    npix = hp.nside2npix(nside)
    mask = np.ones(npix)
    for bpix in np.unique(bad_pix):
        mask[bpix] = 0
    fsky = 1 - (len(np.unique(bad_pix)) / float(npix))
    title = 'f$_{sky}$ = %.3f' % fsky
    hp.mollview(mask, title=title, coord='G')
    plt.show()
示例#15
0
def main():
    """Test module
    """
    """
    plt.figure(figsize=(10, 7), dpi=80)
    _l = np.arange(0, 10, 2)
    for l in _l:
        pl_th = get_pl_vs_th(l, np.arange(-1, 1, 0.00001))
        plt.plot(np.arange(-1, 1, 0.00001), pl_th, '.', label='l = %i'%l)
    plt.legend()
    #plt.show()
    """
    #out_wbeam_txt = 'output/Wbeam_P8R2_ULTRACLEANVETO_V6_56.txt'
    #wb = get_wbeam(out_wbeam_txt)
    #wb.plot()
    """
    NSIDE = 1
    NPIX = hp.nside2npix(NSIDE)
    iii = np.arange(NPIX)
    dec, ra = IndexToDeclRa(NSIDE, iii)
    index = np.where(abs(dec)>10)
    ra = ra[index]
    dec = dec[index]
    #ra = ra
    #dec = dec
    plt.figure(figsize=(10, 7), dpi=80)
    hp.mollview(iii, title="Mollview image RING")
    plt.figure(figsize=(10, 7), dpi=80)
    lab, plots = [], []
    for i in range(0, len(ra)):
        print ra[i], dec[i]
        out_wbeam_txt = 'output/%i_prova.txt'%i
        psf_file = 'output/%i_prova.fits'%i
        dict_gtpsf = {'expcube':'/data1/data/FT-files/output/output_gtltcube'+\
                          '/Allyrs_filtered_gti_ltcube.fits', 
                      'outfile': psf_file, 
                      'irfs': 'P8R2_ULTRACLEANVETO_V6',
                      'evtype': 3,
                      'ra': ra[i], 
                      'dec': dec[i], 
                      'emin': 500, 
                      'emax': 600000,
                      'nenergies': 10, 
                      'thetamax': 30, 
                      'ntheta': 300}
        from GRATools.utils.ScienceTools_ import gtpsf
        gtpsf(dict_gtpsf)
        _l = np.arange(0, 1000, 4)
        psf = get_psf(psf_file)
        if not os.path.exists(out_wbeam_txt):
            wb = build_wbeam(psf, _l, out_wbeam_txt)
        else:
            wb = get_wbeam(out_wbeam_txt)
        wb_1GeV = wb.hslice(1000)
        wl = wb_1GeV.plot(show=False, label='RA:%i, Dec:%i'%(ra[i],dec[i]))
        #lab.append('%i-%i'%(ra[i],dec[i]))
        #plots.append(wl)
        """
    out_wbeam_txt = 'output/Wbeam_P8R2_ULTRACLEANVETO_V6_56.txt'                                                                                                                
    wb = get_wbeam(out_wbeam_txt)
    plt.figure(figsize=(10, 7), dpi=80)
    _l = np.arange(0, 1000, 4)
    wb_500MeV = wb.hslice(500)
    plt.plot(wb_500MeV.x, wb_500MeV.y**2, label='0.5 GeV')
    wb_5GeV = wb.hslice(5000)
    plt.plot(wb_5GeV.x, wb_5GeV.y**2, label='5 GeV')
    wb_50GeV = wb.hslice(50000)
    plt.plot(wb_50GeV.x, wb_50GeV.y**2, label='50 GeV')
    wb_100GeV = wb.hslice(100000)
    plt.plot(wb_100GeV.x, wb_100GeV.y**2, label='100 GeV')
    wb_300GeV = wb.hslice(300000)
    plt.plot(wb_300GeV.x, wb_300GeV.y**2, label='300 GeV')
    plt.legend()
    plt.xlabel('Energy [MeV]')
    plt.ylabel('W$^{2}$$_{beam}$')
    plt.show()
示例#16
0
文件: gMasks.py 项目: nmik/GRATools
def main():
    """Simple test unit
    """
    from scipy.interpolate import interp1d
    cat_file = os.path.join(GRATOOLS_CONFIG,'catalogs/gll_psc_v16.fit')
    src_cat = pf.open(cat_file)
    CAT = src_cat['LAT_Point_Source_Catalog']
    SOURCES = CAT.data
    src_cat.close()
    flux = np.sort(SOURCES.field('Flux1000'))
    flux_min, flux_max = min(flux), max(flux)
    """
    rad_min, rad_max = 0.5, 5.
    RADdeg = rad_min + flux*((rad_max - rad_min)/(flux_max - flux_min)) -\
        flux_min*((rad_max - rad_min)/(flux_max - flux_min))
    plt.figure(facecolor='white')
    plt.title('Disk Radius as a function of $\Phi_{src}$')
    plt.plot(flux, RADdeg, '*-', color='cornflowerblue', linewidth=1, 
             ms=5, alpha=0.2)
    plt.xlabel('Flux [photon/cm$^{2}$/s]')
    plt.ylabel('mask disk Radius [$^{\circ}$]')
    plt.yscale('log')
    plt.xscale('log')
    plt.ylim(1.5, 6)
    plt.grid(which='both', linestyle='--', linewidth=1)
    """
    """
    from GRATools.utils.gWindowFunc import get_psf_ref
    psf_ref_file = os.path.join(GRATOOLS_CONFIG, 'ascii/PSF_UCV_custom.txt')
    psf_ref = get_psf_ref(psf_ref_file)
    energy = np.logspace(1, 6, 10)
    energy = [301.99,524.81,1000.00,2754.23,
              8317.64,22908.68,331131.12]
    lab = ['PSF3','PSF3','PSF1+2+3', 'PSF1+2+3', 'PSF1+2+3','PSF1+2+3', 
           'PSF1+2+3']
    plt.figure(facecolor='white')  
    for i, en in enumerate(energy):
        r_min = 2*psf_ref(en)
        r_max = 5*psf_ref(en)
        print 'R min', r_min, 'R max', r_max
        print 'F min', flux_min, 'F max', flux_max
        RADdeg = r_min + np.log10(flux)*((r_max - r_min)/(np.log10(flux_max) - np.log10(flux_min))) -\
        np.log10(flux_min)*((r_max - r_min)/(np.log10(flux_max) - np.log10(flux_min)))
        #plt.figure(facecolor='white')
        plt.title('Disk Radius as a function of $\Phi_{src}$')
        plt.plot(np.log10(flux), RADdeg, 'o-', linewidth=1,
                 ms=3, alpha=0.4, label="%.1f GeV (%s)"%(en/1000., lab[i]))
        plt.xlabel('Flux [photon/cm$^{2}$/s]')
        plt.ylabel('Mask disk Radius [$^{\circ}$]')
        #plt.yscale('log')
        #plt.xscale('log')
        #plt.ylim(1.5, 6)
        plt.grid(which='both', linestyle='--', linewidth=1)
    plt.legend(fontsize=11, loc=2)
    """
    nside = 512
    SRC_CATALOG_FILE = os.path.join(GRATOOLS_CONFIG,'catalogs/gll_psc_v16.fit')
    bad_pix = mask_src_weighted(SRC_CATALOG_FILE, SRC_CATALOG_FILE,8317, nside)
    bad_pix += mask_bat_gp(2.5e-7, nside)
    npix = hp.nside2npix(nside)
    mask = np.ones(npix)
    for bpix in np.unique(bad_pix):
        mask[bpix] = 0
    fsky = 1-(len(np.unique(bad_pix))/float(npix))
    #title = 'Energy = 100 GeV, F$_{sky}$ = %.3f'%(fsky)
    title = 'F$_{sky}$ = %.3f'%(fsky)   
    hp.mollview(mask, title=title, coord='G', cmap='bone')
    hp.graticule(color='silver')
    plt.show()
示例#17
0
def mkCl(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])

    logger.info('Calculating PSF with gtpsf...')
    dict_gtpsf = data.DICT_GTPSF
    logger.info('Calculating Wbeam Function...')
    out_wb_label = data.OUT_W_LABEL
    mask_label = data.MASK_LABEL
    out_wb_txt = os.path.join(GRATOOLS_OUT, 'Wbeam_%s.txt' % out_wb_label)
    if not os.path.exists(out_wb_txt):
        from GRATools.utils.ScienceTools_ import gtpsf
        gtpsf(dict_gtpsf)
        from GRATools.utils.gWindowFunc import get_psf
        psf_file = data.PSF_FILE
        psf = get_psf(psf_file)
        _l = np.arange(0, 1000)
        from GRATools.utils.gWindowFunc import build_wbeam
        wb = build_wbeam(psf, _l, out_wb_txt)
    else:
        from GRATools.utils.gWindowFunc import get_wbeam
        wb = get_wbeam(out_wb_txt)
    save_current_figure('Wbeam_%s.png' % out_wb_label, clear=True)

    logger.info('Starting Cl analysis...')
    in_label = data.IN_LABEL
    in_label = in_label + '_' + mask_label
    out_label = data.OUT_LABEL
    binning_label = data.BINNING_LABEL
    mask_file = data.MASK_FILE
    mask = hp.read_map(mask_file)
    cl_param_file = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                     %(in_label, binning_label))
    from GRATools.utils.gFTools import get_cl_param
    _emin, _emax, _emean, _f, _ferr, _cn, _fsky = get_cl_param(cl_param_file)
    cl_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_cls.txt' \
                                   %(out_label, binning_label)), 'w')
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        logger.info('Considering bin %.2f - %.2f ...' % (emin, emax))
        gamma = data.WEIGHT_SPEC_INDEX
        Im = (1 / (1 - gamma)) * (emax**(1 - gamma) -
                                  emin**(1 - gamma)) / (emax - emin)
        eweightedmean = np.power(1 / Im, 1 / gamma)
        cl_txt.write('ENERGY\t %.2f %.2f %.2f\n' % (emin, emax, eweightedmean))
        l_max = 1000
        _l = np.arange(l_max)
        wb_en = wb.hslice(eweightedmean)(_l)
        flux_map_name = in_label + '_flux_%i-%i.fits' % (emin, emax)
        flux_map = hp.read_map(os.path.join(GRATOOLS_OUT_FLUX, flux_map_name))
        flux_map_masked = hp.ma(flux_map)
        flux_map_masked.mask = np.logical_not(mask)
        fsky = 1.-(len(np.where(flux_map_masked.filled() == hp.UNSEEN)[0])/\
                       float(len(flux_map)))
        if kwargs['show'] == True:
            hp.mollview(flux_map_masked.filled(),
                        title='f$_{sky}$ = %.3f' % fsky,
                        min=1e-7,
                        max=1e-4,
                        norm='log')
            plt.show()
        print 'fsky = ', fsky
        nside = hp.npix2nside(len(flux_map))
        wpix = hp.sphtfunc.pixwin(nside)[:l_max]
        _cl = hp.sphtfunc.anafast(flux_map_masked.filled(), lmax=l_max-1, \
                                      iter=5)
        _cl_fit = hp.sphtfunc.anafast(flux_map_masked.filled(), iter=4)
        cn_fit = np.average(_cl_fit[-500:-100] / fsky) / len(
            _cl_fit[-500:-100])
        print 'cn fit = ', cn_fit
        print 'cn poisson = ', _cn[i]
        cn = _cn[i]
        wl = wb_en * wpix
        _cl = (_cl / fsky - cn) / (wl**2)
        cl_txt.write('Cl\t%s\n'%str(list(_cl)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        _cl_err = np.sqrt(2. / ((2 * _l + 1) * fsky)) * (_cl + (cn / wl**2))
        cl_txt.write('Cl_ERR\t%s\n\n'%str(list(_cl_err)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.close()
    logger.info('Created %s'%(os.path.join(GRATOOLS_OUT, '%s_%s_cls.txt' \
                                               %(out_label, binning_label))))
示例#18
0
def fit_fore_src_poisson(fore_map, data_map, srctempl_map, mask_map=None,
                         n1_guess=1., c_guess=1, n2_guess=1., exp=None, 
                         smooth=False, show=False):
    """Performs the poisonian fit, recursively computing the log likelihood 
       (using poisson_likelihood) for a grid of values of fit parameters around
       the guess. Returns the values of parameters which minimize the log 
       likelihood, togather to the 1-sigma error

       n1_guess : float
          initial guess for normalization parameter
       n2_guess : float
          initial guess for normalization parameter
       c_guess : float
          initial guess for constant parameter
       fore_map : numpy array
          helapix map of foreground model
       data_map : numpy array
          helapix map of data. It could be either a count map or a flux map.
          If a counts map is given, an exposure map should be given too. See 
          next parameter.
       exp :  numpy array or None
          helapix map of the exposure. Should be given if the data map is in 
          counts (beacause foreground map is in flux units by default and it 
          needs to be turned to counts to be fitted). While, If data map is 
          in flux units, do not declare this parameter, which is None by 
          default.
       smooth : bool
          not implemented yet...
       show : bool
          if true it shows some usefull plot to check if the fit is functioning
    """
    #show=True
    logger.info('Performing poissonian fit...')
    norm1_guess = n1_guess
    norm2_guess = n2_guess
    igrb_guess = c_guess
    nside_out = 64
    mask = 0.
    if mask_map is None:
        logger.info('fit outside default mask: 30deg gp, 2 deg srcs.')
        mask_f = os.path.join(GRATOOLS_CONFIG, 'fits/Mask64_src2_gp30.fits')
        mask = hp.read_map(mask_f)
    else:
        logger.info('fit outside mask given in config file.')
        mask = mask_map   
    logger.info('down grade...')
    fore_repix = np.array(hp.ud_grade(fore_map, nside_out=nside_out))
    data_repix = np.array(hp.ud_grade(data_map, nside_out=nside_out, 
                                       power=-2))
    srct_repix = np.array(hp.ud_grade(srctempl_map, nside_out=nside_out))
    mask_repix =  np.array(hp.ud_grade(mask, nside_out=nside_out,power=-2))
    mask_repix[np.where(mask_repix!=np.amax(mask_repix))[0]] = 0
    mask_repix[np.where(mask_repix==np.amax(mask_repix))[0]] = 1
    _unmask = np.where(mask_repix > 1e-30)[0]
    logger.info('initial guesses: n1=%.1e, n2=%.1e, c=%.1e'%(norm1_guess, 
                                                             norm2_guess,
                                                             igrb_guess))
    norm1_list = np.linspace(norm1_guess*0.3, norm1_guess*2, 21)
    norm2_list = np.linspace(norm2_guess*0.1, norm2_guess*10, 21)
    print norm2_list
    print norm1_list
    igrb_list = np.linspace(igrb_guess*0.01, igrb_guess*10., 101)
    logger.info('Minimization likelihood run1...')
    lh_list = []
    combinations = list(product(norm1_list, norm2_list, igrb_list))
    if exp is not None:
        exposure = exp
        exposure = np.array(hp.ud_grade(exposure, nside_out=nside_out))
        areapix = 4*np.pi/(len(data_repix))
        for i,j,k in combinations: 
            lh = poisson_likelihood_2(i, j, k, fore_repix[_unmask], 
                                    data_repix[_unmask], 
                                    srct_repix[_unmask],
                                    exp=exposure[_unmask],
                                    sr=areapix)
            lh_list.append(lh)
    else:
        for i,j,k in combinations:
            lh = poisson_likelihood_2(i, j, k, fore_repix[_unmask],
                                    data_repix[_unmask], srct_repix[_unmask])
            lh_list.append(lh)
    lh_min = np.argmin(np.array(lh_list))
    (norm1_min, norm2_min, igrb_min) = combinations[lh_min]
    logger.info('Run1 results: n1=%.3f n2=%.2e c=%.2e'%(norm1_min, norm2_min, 
                                                      igrb_min))
    norm1_list = np.linspace(norm1_min*0.9, norm1_min*1.7, 21)
    norm2_list = np.linspace(norm2_min*0.5, norm2_min*5, 21)  
    print norm2_list
    print norm1_list
    igrb_list = np.linspace(igrb_min*0.5, igrb_min*1.5, 101)
    logger.info('Minimization likelihood run2...')
    lh_list = []
    combinations = np.array(list(product(norm1_list, norm2_list, igrb_list)))
    if exp is not None:
        exposure = exp
        exposure = np.array(hp.ud_grade(exposure, nside_out=nside_out))
        areapix = 4*np.pi/(len(data_repix))
        for i,j,k in product(norm1_list, norm2_list, igrb_list):
            lh = poisson_likelihood_2(i, j, k, fore_repix[_unmask],
                                    data_repix[_unmask],
                                    srct_repix[_unmask],
                                    exp=exposure[_unmask],
                                    sr=areapix)
            lh_list.append(lh)
    else:
        for i,j,k in product(norm1_list, norm2_list, igrb_list):
            lh = poisson_likelihood_2(i, j, k, fore_repix[_unmask],
                                    data_repix[_unmask],srct_repix[_unmask])
            lh_list.append(lh)
    lh_list = np.array(lh_list)
    lh_min = np.argmin(lh_list)
    (norm1_min, norm2_min, igrb_min) = combinations[lh_min]
    logger.info('Run2 results: n1=%.3f n2=%.2e c=%.2e'%(norm1_min, norm2_min, 
                                                      igrb_min))
    lh_delta = np.array(lh_list)[lh_min]+2.3
    index = np.where(np.array(lh_list) < lh_delta)[0]
    _norm1 = np.array([x[0] for x in combinations[index]])
    logger.info('Norm1 err: %.4f - %.4f'%(_norm1[0], _norm1[-1]))
    n1_err = (_norm1[0], _norm1[-1])
    _norm2 = np.array([x[1] for x in combinations[index]])
    logger.info('Norm2 err: %.2e - %.2e'%(_norm2[0], _norm2[-1]))
    n2_err = (_norm2[0], _norm2[-1])
    _igrb = np.array([x[2] for x in combinations[index]])
    logger.info('Igrb err: %.2e - %.2e'%(np.amin(_igrb), np.amax(_igrb)))
    igrb_err = (np.amin(_igrb), np.amax(_igrb))
    if show == True:
        n1 = np.array([x[0] for x in combinations])
        n2 = np.array([x[1] for x in combinations])
        c = np.array([x[2] for x in combinations])
        plt.figure(facecolor='white')
        plt.plot(n2, lh_list, 'o', color='coral', alpha=0.3)
        plt.plot(norm2_min, lh_list[lh_min] , 'r*')
        plt.plot([_norm2[0], _norm2[-1]], [lh_delta, lh_delta], 'r-')
        plt.xlabel('Normalization')
        plt.ylabel('-Log(Likelihood)')
        plt.title('norm src')
        plt.figure(facecolor='white')
        plt.plot(n1, lh_list, 'o', color='coral', alpha=0.3)
        plt.plot(norm1_min, lh_list[lh_min] , 'r*')
        plt.plot([_norm1[0], _norm1[-1]], [lh_delta, lh_delta], 'r-')
        plt.xlabel('Normalization')
        plt.ylabel('-Log(Likelihood)')
        plt.title('norm fore')
        plt.figure(facecolor='white')
        plt.plot(c, lh_list, 'o', color='coral', alpha=0.3)
        plt.plot(igrb_min, lh_list[lh_min] , 'r*')
        plt.xlabel('Normalization')
        plt.ylabel('-Log(Likelihood)')
        plt.show()
    return norm1_min, norm2_min, igrb_min, n1_err, n2_err, igrb_err
示例#19
0
文件: mkcross.py 项目: nmik/GRATools
def mkCross(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])

    logger.info('Calculating PSF with gtpsf...')
    dict_gtpsf = data.DICT_GTPSF
    logger.info('Calculating Wbeam Function...')
    out_wb_label = data.OUT_W_LABEL
    out_wb_txt = os.path.join(GRATOOLS_OUT, 'Wbeam_%s.txt'%out_wb_label)
    if not os.path.exists(out_wb_txt):
        from GRATools.utils.ScienceTools_ import gtpsf
        gtpsf(dict_gtpsf)
        from GRATools.utils.gWindowFunc import get_psf
        psf_file = data.PSF_FILE
        psf = get_psf(psf_file)
        _l = np.arange(0, 1000)
        from GRATools.utils.gWindowFunc import build_wbeam
        wb = build_wbeam(psf, _l, out_wb_txt)
    else:
        from GRATools.utils.gWindowFunc import get_wbeam
        wb = get_wbeam(out_wb_txt)
    save_current_figure('Wbeam_%s.png'%out_wb_label, clear=True)

    logger.info('Starting Cl analysis...')
    in_label1 = data.IN_LABEL1
    in_label2 = data.IN_LABEL2
    out_label = data.OUT_LABEL
    binning_label = data.BINNING_LABEL
    mask_file = data.MASK_FILE
    mask = hp.read_map(mask_file)
    cl_param_file1 = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                     %(in_label1, binning_label))
    cl_param_file2 = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                      %(in_label2, binning_label))
    from GRATools.utils.gFTools import get_cl_param
    _emin, _emax, _emean, _f, _ferr, _cn, _fsky = get_cl_param(cl_param_file1)
    _emin2, _emax2, _emean2, _f2, _ferr2, _cn2, _fsky2 = get_cl_param(cl_param_file2)
    cross_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_cross.txt' \
                                   %(out_label, binning_label)), 'w')
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        logger.info('Considering bin %.2f - %.2f ...'%(emin, emax))
        gamma = data.WEIGHT_SPEC_INDEX
        Im = (1/(1-gamma))*(emax**(1-gamma)-emin**(1-gamma))/(emax-emin)
        eweightedmean = np.power(1/Im, 1/gamma)
        cross_txt.write('ENERGY\t %.2f %.2f %.2f\n'%(emin, emax, eweightedmean))
        l_max= 1000
        _l = np.arange(l_max)
        wb_en = wb.hslice(eweightedmean)(_l)
        flux_map_name1 = in_label1+'_flux_%i-%i.fits'%(emin, emax)
        flux_map_name2 = in_label2+'_flux_%i-%i.fits'%(emin, emax)
        flux_map1 = hp.read_map(os.path.join(GRATOOLS_OUT_FLUX, flux_map_name1))
        flux_map2 = hp.read_map(os.path.join(GRATOOLS_OUT_FLUX, flux_map_name2))
        flux_map_masked1 = hp.ma(flux_map1)
        flux_map_masked1.mask = np.logical_not(mask)
        flux_map_masked2 = hp.ma(flux_map2)
        flux_map_masked2.mask = np.logical_not(mask)
        fsky1 = 1.-(len(np.where(flux_map_masked1.filled() == hp.UNSEEN)[0])/\
                       float(len(flux_map1)))
        fsky2 = 1.-(len(np.where(flux_map_masked2.filled() == hp.UNSEEN)[0])/\
                       float(len(flux_map2)))
        if kwargs['show'] == True:
            hp.mollview(flux_map_masked1.filled(), title='f$_{sky}$ = %.3f'%fsky,
                        min=1e-7, max=1e-4, norm='log')
            plt.show()
        print 'fsky = ', fsky1, fsky2
        fsky = np.sqrt(fsky1*fsky2)
        nside1 = hp.npix2nside(len(flux_map1))
        nside2 = hp.npix2nside(len(flux_map1))
        wpix1 = hp.sphtfunc.pixwin(nside1)[:l_max]
        wpix2 = hp.sphtfunc.pixwin(nside2)[:l_max]
        _cl_cross = hp.sphtfunc.anafast(flux_map_masked1.filled(),
                                        flux_map_masked2.filled(), lmax=l_max-1, \
                                             iter=5)
        wl2 = wb_en*wb_en*wpix1*wpix2
        _cl_cross = (_cl_cross/fsky)/(wl2)
        cross_txt.write('Cl\t%s\n'%str(list(_cl_cross)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        _cl_cross_err = np.sqrt(2./((2*_l+1)*fsky))*(_cl_cross)
        cross_txt.write('Cl_ERR\t%s\n\n'%str(list(_cl_cross_err)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cross_txt.close()
    logger.info('Created %s'%(os.path.join(GRATOOLS_OUT, '%s_%s_cross.txt' \
                                               %(out_label, binning_label))))
示例#20
0
def fit_foreground_poisson(fore_map, data_map, mask_map=None, n_guess=1., 
                           c_guess=0.1,exp=None, smooth=False, show=False):
    """Performs the poisonian fit, recursively computing the log likelihood 
       (using poisson_likelihood) for a grid of values of fit parameters around
       the guess. Returns the values of parameters which minimize the log 
       likelihood, togather to the 1-sigma error

       n_guess : float
          initial guess for normalization parameter
       c_guess : float
          initial guess for constant parameter
       fore_map : numpy array
          helapix map of foreground model
       data_map : numpy array
          helapix map of data. It could be either a count map or a flux map.
          If a counts map is given, an exposure map should be given too. See 
          next parameter.
       exp :  numpy array or None
          helapix map of the exposure. Should be given if the data map is in 
          counts (beacause foreground map is in flux units by default and it 
          needs to be turned to counts to be fitted). While, If data map is 
          in flux units, do not declare this parameter, which is None by 
          default.
       smooth : bool
          not implemented yet...
       show : bool
          if true it shows some usefull plot to check if the fit is functioning
    """
    #show=True
    logger.info('Performing poissonian fit...')
    norm_guess = n_guess
    igrb_guess = c_guess
    nside_out = 64
    mask = 0.
    if mask_map is None:
        logger.info('fit outside default mask: 30deg gp, 2 deg srcs.')
        mask_f = os.path.join(GRATOOLS_CONFIG, 'fits/Mask64_src2_gp30.fits')
        mask = hp.read_map(mask_f)
    else:
        logger.info('fit outside mask given in config file.')
        mask = mask_map   
    logger.info('down grade...')
    fore_repix = np.array(hp.ud_grade(fore_map, nside_out=nside_out))
    data_repix = np.array(hp.ud_grade(data_map, nside_out=nside_out, 
                                       power=-2))
    mask_repix =  np.array(hp.ud_grade(mask, nside_out=nside_out,
                                       power=-2))
    mask_repix[np.where(mask_repix!=np.amax(mask_repix))[0]] = 0
    mask_repix[np.where(mask_repix==np.amax(mask_repix))[0]] = 1
    _unmask = np.where(mask_repix > 1e-30)[0]
    norm_list = np.linspace(norm_guess*0.3, norm_guess*1.5, 50)
    igrb_list = np.linspace(igrb_guess*0.01, igrb_guess*10., 200)
    logger.info('Minimization likelihood run1...')
    lh_list = []
    combinations = list(product(norm_list, igrb_list))
    if exp is not None:
        exposure = exp
        exposure = np.array(hp.ud_grade(exposure, nside_out=nside_out))
        areapix = 4*np.pi/(len(data_repix))
        for i,j in product(norm_list, igrb_list): 
            lh = poisson_likelihood(i, j, fore_repix[_unmask], 
                                    data_repix[_unmask], 
                                    exp=exposure[_unmask],
                                    sr=areapix)
            lh_list.append(lh)
    else:
        for i,j in product(norm_list, igrb_list):
            lh = poisson_likelihood(i, j, fore_repix[_unmask],
                                    data_repix[_unmask])
            lh_list.append(lh)
    lh_min = np.argmin(np.array(lh_list))
    (norm_min, igrb_min) = combinations[lh_min]
    logger.info('Run1 results: n=%.3f c=%.1e'%(norm_min, igrb_min))
    norm_list = np.linspace(norm_min*0.7, norm_min*1.2, 51)   
    igrb_list = np.linspace(igrb_min*0.5, igrb_min*1.5, 101)
    logger.info('Minimization likelihood run2...')
    lh_list = []
    combinations = np.array(list(product(norm_list, igrb_list)))
    if exp is not None:
        exposure = exp
        exposure = np.array(hp.ud_grade(exposure, nside_out=nside_out))
        areapix = 4*np.pi/(len(data_repix))
        for i,j in product(norm_list, igrb_list):
            lh = poisson_likelihood(i, j, fore_repix[_unmask],
                                    data_repix[_unmask],
                                    exp=exposure[_unmask],
                                    sr=areapix)
            lh_list.append(lh)
    else:
        for i,j in product(norm_list, igrb_list):
            lh = poisson_likelihood(i, j, fore_repix[_unmask],
                                    data_repix[_unmask])
            lh_list.append(lh)
    lh_list = np.array(lh_list)
    lh_min = np.argmin(lh_list)
    (norm_min, igrb_min) = combinations[lh_min]
    logger.info('Run2 results: n=%.3f c=%e'%(norm_min, igrb_min))
    lh_delta = np.array(lh_list)[lh_min]+2.3
    index = np.where(np.array(lh_list) < lh_delta)[0]
    _norm = np.array([x[0] for x in combinations[index]])
    logger.info('Norm err: %.4f - %.4f'%(_norm[0], _norm[-1]))
    _igrb = np.array([x[1] for x in combinations[index]])
    logger.info('Igrb err: %.e - %.e'%(np.amin(_igrb), np.amax(_igrb)))
    
    if show == True:
        n = np.array([x[0] for x in combinations])
        plt.figure(facecolor='white')
        plt.plot(n, lh_list, 'o', color='coral', alpha=0.3)
        plt.plot(norm_min, lh_list[lh_min] , 'r*')
        plt.plot([_norm[0], _norm[-1]], [lh_delta, lh_delta], 'r-')
        plt.xlabel('Normalization')
        plt.ylabel('-Log(Likelihood)')
        
        igrb = np.array([x[1] for x in combinations])
        plt.figure(facecolor='white')
        plt.plot(igrb, lh_list, 'o', color='coral', alpha=0.3)
        plt.plot(igrb_min, lh_list[lh_min] , 'r*')
        plt.plot([np.amin(_igrb), np.amax(_igrb)], [lh_delta, lh_delta], 'r-')
        plt.xlabel('Constant')
        plt.ylabel('-Log(Likelihood)')

        fig = plt.figure(facecolor='white')
        z = lh_list
        zmin = lh_list[lh_min]
        z.shape = (len(norm_list), len(igrb_list))
        ax = fig.add_subplot(111)
        cax = ax.matshow(z, origin='lower', cmap='Spectral',
                    aspect='auto')
        plt.xlabel('$C$ $[cm^{-2}s^{-1}sr^{-1}]$')
        plt.ylabel('$N$')
        #plt.title('$\Phi_{data}=N\cdot\Phi_{model}+C$')
        x_ticks = np.linspace(np.amin(igrb_list), np.amax(igrb_list), 6)
        formatting_function = np.vectorize(lambda f: format(f, '6.1E'))
        x_ticks = list(formatting_function(x_ticks))
        y_ticks = list(np.around(np.linspace(np.amin(norm_list), 
                                             np.amax(norm_list), 6), 
                                 decimals=3))
        ax.set_yticklabels(['']+y_ticks)
        ax.set_xticklabels(['']+x_ticks)
        ax.xaxis.set_ticks_position('bottom')
        cb = plt.colorbar(cax, format='$%.1e$')
        cb.set_label('-Log(Likelihood)', rotation=90)
        norm_min_ind = list(norm_list).index(norm_min)
        igrb_min_ind = list(igrb_list).index(igrb_min)
        _norm_ind = []
        _igrb_ind = []
        for i in range(0, len(index)):
            _norm_ind.append(list(norm_list).index(_norm[i]))
            _igrb_ind.append(list(igrb_list).index(_igrb[i]))
        _norm_ind = np.array(_norm_ind)
        _igrb_ind = np.array(_igrb_ind)
        plt.contourf(z, [zmin, zmin+2.3, zmin+4.61, zmin+5.99], 
                     colors='w', origin='lower', alpha=0.3)
        plt.scatter(igrb_min_ind, norm_min_ind, s=45, c='w', marker='+')
        plt.show()
    return norm_min, igrb_min, _norm[0], _norm[-1], np.amin(_igrb), \
        np.amax(_igrb)
示例#21
0
def mkCross(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])

    lmax = data.LMAX
    _l = np.arange(0, lmax)
    gamma = data.WEIGHT_SPEC_INDEX
    out_label = data.OUT_LABEL
    logger.info('Calculating energy spectrum...')
    from GRATools.utils.gWindowFunc import get_powerlaw_spline
    energy_spec = get_powerlaw_spline(gamma)

    logger.info('Calculating PSF with gtpsf 1...')
    dict_gtpsf1 = data.DICT_GTPSF1
    logger.info('Calculating Wbeam Function1...')
    out_wb_label1 = data.OUT_W_LABEL1
    out_wb_txt1 = os.path.join(GRATOOLS_OUT, 'Wbeam_%s.txt'%out_wb_label1)
    in_label1 = data.IN_LABEL1
    if not os.path.exists(out_wb_txt1):
        from GRATools.utils.ScienceTools_ import gtpsf
        gtpsf(dict_gtpsf1)
        from GRATools.utils.gWindowFunc import get_psf
        psf_file1 = data.PSF_FILE1
        psf1 = get_psf(psf_file1)
        from GRATools.utils.gWindowFunc import build_wbeam
        wb1 = build_wbeam(psf1, _l, out_wb_txt1)
    else:
        pass
    logger.info('Calculating PSF with gtpsf 2...')
    dict_gtpsf2 = data.DICT_GTPSF2
    logger.info('Calculating Wbeam Function2...')
    out_wb_label2 = data.OUT_W_LABEL2
    out_wb_txt2 = os.path.join(GRATOOLS_OUT, 'Wbeam_%s.txt'%out_wb_label2)
    in_label2 = data.IN_LABEL2
    if not os.path.exists(out_wb_txt2):
        from GRATools.utils.ScienceTools_ import gtpsf
        gtpsf(dict_gtpsf2)
        from GRATools.utils.gWindowFunc import get_psf
        psf_file2 = data.PSF_FILE2
        psf2 = get_psf(psf_file2)
        from GRATools.utils.gWindowFunc import build_wbeam
        wb2 = build_wbeam(psf2, _l, out_wb_txt2)
    else:
        pass
    
    logger.info('Starting Cross analysis...')
    mask_label1 = data.MASK_LABEL1
    mask_label2 = data.MASK_LABEL2
    in_label1 = in_label1 + '_' + mask_label1
    in_label2 = in_label2 + '_' + mask_label2
    binning_label1 = data.BINNING_LABEL1
    binning_label2 = data.BINNING_LABEL2
    mask_file1 = data.MASK_FILE1
    mask_file2 = data.MASK_FILE2
    cl_param_file1 = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                     %(in_label1, binning_label1))
    cl_param_file2 = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                     %(in_label2, binning_label2))
    from GRATools.utils.gFTools import get_cl_param
    _emin, _emax, _emean, _f1, _ferr1, _cn1, _fsky1 = \
        get_cl_param(cl_param_file1)
    _emin, _emax, _emean, _f2, _ferr2, _cn2, _fsky2 = \
        get_cl_param(cl_param_file2)
    cl_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_polspicecross.txt' \
                                   %(out_label, binning_label1)), 'w')
    from GRATools.utils.gWindowFunc import get_integral_wbeam
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        logger.info('Considering bin %.2f - %.2f ...'%(emin, emax))
        mask_f1 = mask_file1
        mask_f2 = mask_file2
        if type(mask_file1) == list:
            mask_f1 = mask_file1[i]
        if type(mask_file2) == list:
            mask_f2 = mask_file2[i]
        mask1 = hp.read_map(mask_f1)
        mask2 = hp.read_map(mask_f2)
        wb1_en = get_integral_wbeam(out_wb_txt1, energy_spec, emin, emax)
        wb2_en = get_integral_wbeam(out_wb_txt2, energy_spec, emin, emax) 
        cl_txt.write('ENERGY\t %.2f %.2f %.2f\n'%(emin, emax, _emean[i]))
        l_max = lmax
        _l = np.arange(l_max)
        wb1_en = wb1_en(_l)
        wb2_en = wb2_en(_l)
        flux_map_name1 = in_label1+'_flux_%i-%i.fits'%(emin, emax)
        flux_map_name2 = in_label2+'_flux_%i-%i.fits'%(emin, emax)
        flux_map_f1 = os.path.join(GRATOOLS_OUT_FLUX, flux_map_name1)
        flux_map_f2 = os.path.join(GRATOOLS_OUT_FLUX, flux_map_name2)
        flux_map_f_mdclean1 = remove_monopole_dipole(flux_map_f1)
        flux_map_f_mdclean2 = remove_monopole_dipole(flux_map_f2)
        flux_map1 = hp.read_map(flux_map_f_mdclean1)
        flux_map2 = hp.read_map(flux_map_f_mdclean2)
        fsky1 = _fsky1[i]
        fsky2 = _fsky2[i]
        cn = 0.
        if kwargs['show'] == True:
            hp.mollview(flux_map1*mask1, title='f$_{sky}$ = %.3f'%fsky,
                        min=1e-7, max=1e-4, norm='log')
            hp.mollview(flux_map2*mask2, title='f$_{sky}$ = %.3f'%fsky,
                        min=1e-7, max=1e-4, norm='log')
            plt.show()
        logger.info('fsky1 = %.3f'%fsky1)
        logger.info('fsky2 = %.3f'%fsky2)
        nside1 = hp.npix2nside(len(flux_map1))
        nside2 = hp.npix2nside(len(flux_map2))
        wpix1 = hp.sphtfunc.pixwin(nside1)[:l_max]
        wpix2 = hp.sphtfunc.pixwin(nside2)[:l_max]
        out_name = '%s_%i-%i' %(out_label, emin, emax)
        out_folder =  os.path.join(GRATOOLS_OUT, 'output_pol')
        logger.info('cn poisson = %e'%cn)
        wl = np.sqrt(wb1_en*wpix1*wb2_en*wpix2)
        if not os.path.exists(out_folder):
            os.makedirs(out_folder)
        pol_dict = data.POLCEPICE_DICT
        for key in pol_dict:
            if key == 'clfile':
                pol_dict[key] = os.path.join(out_folder,'%s_cl.txt'%out_name)
            if key == 'cl_outmap_file':
                pol_dict[key] = os.path.join(out_folder,'%s_clraw.txt'%out_name)
            if key == 'covfileout':
                 pol_dict[key] = os.path.join(out_folder,'%s_cov.fits'%out_name)
            if key == 'mapfile':
                pol_dict[key] = flux_map_f_mdclean1
            if key == 'maskfile':
                pol_dict[key] = mask_f1
            if key == 'mapfile2':
                pol_dict[key] = flux_map_f_mdclean2
            if key == 'maskfile2':
                pol_dict[key] = mask_f2
        config_file_name = 'pol_%s'%(out_name)
        if os.path.exists(os.path.join(out_folder,'%s_cl.txt'%out_name)) and \
                os.path.exists(os.path.join(out_folder,'%s_cov.fits'%out_name)):
            logger.info('ATT: Retriving power spectrum...')
            _l, _cl, _clerr = pol_cl_parse(os.path.join(out_folder,
                                                        '%s_cl.txt'%out_name),
                                           os.path.join(out_folder,
                                                        '%s_cov.fits'%out_name),
                                           raw_corr=(cn, wl),
                                           rebin=True)
            logger.info('... and covariance matrix.')
            _cov = pol_cov_parse(os.path.join(out_folder,
                                              '%s_cov.fits'%out_name),
                                 wl_array=wl,
                                 rebin=True, show=True)
        else:
            _l, _cl, _clerr, _cov = pol_cl_calculation(pol_dict, 
                                                       config_file_name,
                                                       raw_corr=(cn, wl),
                                                       rebin=True,show=True)
        cl_txt.write('multipole\t%s\n'%str(list(_l)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        cl_txt.write('Cl\t%s\n'%str(list(_cl)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        cl_txt.write('Cl_ERR\t%s\n\n'%str(list(_clerr)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.close()
    logger.info('Created %s'%(os.path.join(GRATOOLS_OUT,'%s_%s_polspicecls.txt'
                                           %(out_label, binning_label1))))
示例#22
0
def mkCl(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])
    
    lmax = data.LMAX
    _l = np.arange(0, lmax)
    gamma = data.WEIGHT_SPEC_INDEX
    out_label = data.OUT_LABEL
    logger.info('Calculating energy spectrum...')
    from GRATools.utils.gWindowFunc import get_powerlaw_spline
    energy_spec = get_powerlaw_spline(gamma)

    logger.info('Calculating PSF with gtpsf...')
    dict_gtpsf = data.DICT_GTPSF
    logger.info('Calculating Wbeam Function...')
    out_wb_label = data.OUT_W_LABEL 
    out_wb_txt = os.path.join(GRATOOLS_OUT, 'Wbeam_%s.txt'%out_wb_label)
    in_label = data.IN_LABEL
    if not os.path.exists(out_wb_txt):
        from GRATools.utils.ScienceTools_ import gtpsf
        gtpsf(dict_gtpsf)
        from GRATools.utils.gWindowFunc import get_psf
        psf_file = data.PSF_FILE
        psf = get_psf(psf_file)
        #_l = np.arange(0, 1500)
        from GRATools.utils.gWindowFunc import build_wbeam
        wb = build_wbeam(psf, _l, out_wb_txt)
    else:
        pass

    logger.info('Starting Cl analysis...')
    mask_label = data.MASK_LABEL
    in_label = in_label + '_' + mask_label
    binning_label = data.BINNING_LABEL
    mask_file = data.MASK_FILE
    cl_param_file = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                     %(in_label, binning_label))
    from GRATools.utils.gFTools import get_cl_param
    _emin, _emax, _emean, _f, _ferr, _cn, _fsky = get_cl_param(cl_param_file)
    cl_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_polspicecls.txt' \
                                   %(out_label, binning_label)), 'w')
    monopoles, monopoles_err = [], []
    dipol_vectors = []
    from GRATools.utils.gWindowFunc import get_integral_wbeam
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        logger.info('Considering bin %.2f - %.2f ...'%(emin, emax))
        mask_f = mask_file
        if type(mask_file) == list:
            mask_f = mask_file[i]
        #mask = hp.read_map(mask_f)
        wb_en = get_integral_wbeam(out_wb_txt, energy_spec, emin, emax)
        cl_txt.write('ENERGY\t %.2f %.2f %.2f\n'%(emin, emax, _emean[i]))
        l_max= lmax
        _l = np.arange(l_max)
        wb_en = wb_en(_l)
        # monopole and dipole cleaning from MASKED map, bad value = UNSEEN
        flux_map_name = in_label+'_fluxmasked_%i-%i.fits'%(emin, emax)
        flux_map_f = os.path.join(GRATOOLS_OUT_FLUX, flux_map_name)
        flux_map_f_mdclean, mono, dipo = remove_monopole_dipole(flux_map_f)
        monopoles.append(mono)
        mono_err = np.sqrt(2/_fsky[i])*(mono+_cn[i])
        monopoles_err.append(mono_err)
        dipol_vectors.append(dipo)
        logger.info('Monopole_term = %e +- %e'%(mono, mono_err))
        logger.info('Dipole vector = %s' %(str(dipo)))
        # Up to l=n cleaning from MASKED map (correction for fsky discarded)
        if kwargs['multiclean'] is not None:
            flux_map_f_multiclean =  remove_multipole(flux_map_f_mdclean, 
                                        lmax=kwargs['multiclean'])
            flux_map = hp.read_map(flux_map_f_multiclean)
        else:
            flux_map = hp.read_map(flux_map_f_mdclean)
        fsky = _fsky[i]
        cn = _cn[i]
        if kwargs['show'] == True:
            hp.mollview(flux_map, title='f$_{sky}$ = %.3f'%fsky)
            plt.show()
        logger.info('fsky = '%fsky)
        nside = hp.npix2nside(len(flux_map))
        wpix = hp.sphtfunc.pixwin(nside)[:l_max]
        out_name = '%s_%i-%i' %(out_label, emin, emax)
        out_folder =  os.path.join(GRATOOLS_OUT, 'output_pol')
        logger.info('cn poisson = %e'%cn)
        wl = wb_en*wpix
        if not os.path.exists(out_folder):
            os.makedirs(out_folder)
        pol_dict = data.POLCEPICE_DICT
        for key in pol_dict:
            if key == 'clfile':
                pol_dict[key] = os.path.join(out_folder,'%s_cl.txt'%out_name)
            if key == 'cl_outmap_file':
                pol_dict[key] = os.path.join(out_folder,'%s_clraw.txt'%out_name)
            if key == 'covfileout':
                 pol_dict[key] = os.path.join(out_folder,'%s_cov.fits'%out_name)
            if key == 'mapfile':
                pol_dict[key] = flux_map_f_mdclean
            if key == 'maskfile':
                pol_dict[key] = mask_f
        config_file_name = 'pol_%s'%(out_name)
        if os.path.exists(os.path.join(out_folder,'%s_cl.txt'%out_name)) and \
                os.path.exists(os.path.join(out_folder,'%s_cov.fits'%out_name)):
            logger.info('ATT: Retriving power spectrum...')
            _l, _cl, _clerr = pol_cl_parse(os.path.join(out_folder,
                                                        '%s_cl.txt'%out_name),
                                           os.path.join(out_folder,
                                                        '%s_cov.fits'%out_name),
                                           raw_corr=(cn, wl),
                                           rebin=True)
            logger.info('... and covariance matrix.')
            _cov = pol_cov_parse(os.path.join(out_folder,
                                              '%s_cov.fits'%out_name),
                                 wl_array=wl,
                                 rebin=True, show=True)
        else:
            _l, _cl, _clerr, _cov = pol_cl_calculation(pol_dict, 
                                                  config_file_name,
                                                  raw_corr=(cn, wl),
                                                  rebin=True,show=True) 
        cl_txt.write('multipole\t%s\n'%str(list(_l)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        cl_txt.write('Cl\t%s\n'%str(list(_cl)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        cl_txt.write('Cl_ERR\t%s\n\n'%str(list(_clerr)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.write('Monopoles\t%s\n\n'%str(monopoles).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.write('Monopoles_ERR\t%s\n\n'%str(monopoles_err).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.close()
    logger.info('Created %s'%(os.path.join(GRATOOLS_OUT,'%s_%s_polspicecls.txt'
                                           %(out_label, binning_label))))
示例#23
0
def mkCl(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])
    logger.info('Calculating PSF with gtpsf...')
    dict_gtpsf = data.DICT_GTPSF
    logger.info('Calculating Wbeam Function...')
    out_wb_label = data.OUT_W_LABEL

    out_wb_txt = os.path.join(GRATOOLS_OUT, 'Wbeam_%s.txt' % out_wb_label)
    if not os.path.exists(out_wb_txt):
        from GRATools.utils.ScienceTools_ import gtpsf
        gtpsf(dict_gtpsf)
        from GRATools.utils.gWindowFunc import get_psf
        psf_file = data.PSF_FILE
        psf = get_psf(psf_file)
        _l = np.arange(0, 1000)
        from GRATools.utils.gWindowFunc import build_wbeam
        wb = build_wbeam(psf, _l, out_wb_txt)
    else:
        from GRATools.utils.gWindowFunc import get_wbeam
        wb = get_wbeam(out_wb_txt)
    save_current_figure('Wbeam_%s.png' % out_wb_label, clear=True)

    logger.info('Starting Cl analysis...')
    in_label = data.IN_LABEL
    mask_label = data.MASK_LABEL
    in_label = in_label + '_' + mask_label
    out_label = data.OUT_LABEL
    binning_label = data.BINNING_LABEL
    mask_file = data.MASK_FILE
    cl_param_file = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                     %(in_label, binning_label))
    from GRATools.utils.gFTools import get_cl_param
    _emin, _emax, _emean, _f, _ferr, _cn, _fsky = get_cl_param(cl_param_file)
    cl_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_polspicecls.txt' \
                                   %(out_label, binning_label)), 'w')
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        logger.info('Considering bin %.2f - %.2f ...' % (emin, emax))
        mask_f = mask_file
        if type(mask_file) == list:
            mask_f = mask_file[i]
        gamma = data.WEIGHT_SPEC_INDEX
        Im = (1 / (1 - gamma)) * (emax**(1 - gamma) -
                                  emin**(1 - gamma)) / (emax - emin)
        eweightedmean = np.power(1 / Im, 1 / gamma)
        cl_txt.write('ENERGY\t %.2f %.2f %.2f\n' % (emin, emax, eweightedmean))
        l_max = 1000
        _l = np.arange(l_max)
        wb_en = wb.hslice(eweightedmean)(_l)
        flux_map_name = in_label + '_flux_%i-%i.fits' % (emin, emax)
        flux_map_f = os.path.join(GRATOOLS_OUT_FLUX, flux_map_name)
        flux_map = hp.read_map(flux_map_f)
        fsky = _fsky[i]
        if kwargs['show'] == True:
            hp.mollview(flux_map_masked.filled(),
                        title='f$_{sky}$ = %.3f' % fsky,
                        min=1e-7,
                        max=1e-4,
                        norm='log')
            plt.show()
        logger.info('fsky = ' % fsky)
        nside = hp.npix2nside(len(flux_map))
        wpix = hp.sphtfunc.pixwin(nside)[:l_max]
        out_name = '%s_%i-%i' % (out_label, emin, emax)
        out_folder = os.path.join(GRATOOLS_OUT, 'output_pol')
        if not os.path.exists(out_folder):
            os.makedirs(out_folder)
        pol_dict = data.POLCEPICE_DICT
        for key in pol_dict:
            if key == 'clfile':
                pol_dict[key] = os.path.join(out_folder,
                                             '%s_cl.txt' % out_name)
            if key == 'cl_outmap_file':
                pol_dict[key] = os.path.join(out_folder,
                                             '%s_clraw.txt' % out_name)
            if key == 'covfileout':
                pol_dict[key] = os.path.join(out_folder,
                                             '%s_cov.fits' % out_name)
            if key == 'mapfile':
                pol_dict[key] = flux_map_f
            if key == 'maskfile':
                pol_dict[key] = mask_f
        config_file_name = 'pol_%s' % (out_name)
        _l, _cl, _cl_err = pol_cl_calculation(pol_dict, config_file_name)
        logger.info('cn poisson = %e' % _cn[i])
        cn = _cn[i]
        wl = wb_en * wpix
        _cl = (_cl[:l_max] - cn) / (wl**2)
        _cl_err = _cl_err[:l_max] / (wl**2)
        cl_txt.write('Cl\t%s\n'%str(list(_cl)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        #_cl_err = np.sqrt(2./((2*_l+1)*fsky))*(_cl+(cn/wl**2))
        cl_txt.write('Cl_ERR\t%s\n\n'%str(list(_cl_err)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.close()
    logger.info(
        'Created %s' %
        (os.path.join(GRATOOLS_OUT, '%s_%s_polspicecls.txt' %
                      (out_label, binning_label))))
示例#24
0
文件: mapview.py 项目: nmik/GRATools
def maps_view(**kwargs):
    """Viewer interface for healpix maps
    """
    input_file = kwargs['infile']
    healpix_maps = hp.read_map(input_file, field=kwargs['field'])
    if kwargs['smoothing'] is not None:
        healpix_maps = hp.sphtfunc.smoothing(healpix_maps, 
                                        fwhm=np.radians(kwargs['smoothing']))
    if not os.path.exists(input_file):
        abort("Map %s not found!"%input_file)
    t = os.path.basename(input_file)
    nside_out = kwargs['udgrade']
    logger.info('Returning a map with NSIDE=%i'%nside_out)
    if kwargs['field'] == 0:
        if kwargs['counts'] == True:
            if kwargs['applymask'] is not None:
                mask = hp.read_map(kwargs['applymask'])
                healpix_maps = healpix_maps*mask
            healpix_maps = hp.pixelfunc.ud_grade(healpix_maps, nside_out, 
                                                 pess=True, power=-2)
        else:
            if kwargs['applymask'] is not None:
                mask = hp.read_map(kwargs['applymask'])
                healpix_maps = healpix_maps*mask
                healpix_maps = hp.pixelfunc.ud_grade(healpix_maps, nside_out, 
                                                     pess=True)
                healpix_maps[np.where(healpix_maps==0)[0]] = hp.UNSEEN
        if kwargs['zscale'] == 'optimized':
            logger.info('Optimizing...')
            hp.mollview(healpix_maps, title=t.replace('.fits',''), \
                            coord='G', min=-5e-7, max=1e-7, cmap=cool_cmap)
            plt.show()  
        elif kwargs['zscale'] == 'log':
            logger.info('Optimizinglog z scale...')
            hp.mollview(healpix_maps, title=t.replace('.fits',''), \
                            coord='G', norm='log', cmap=cool_cmap)
            plt.show()  
        elif kwargs['zscale'] == 'hist':
            logger.info('Optimizinglog z scale...')
            hp.mollview(healpix_maps, title=t.replace('.fits',''), \
                            coord='G', norm='hist', cmap=cool_cmap)
            plt.show()
        else:
            hp.mollview(healpix_maps, title=t.replace('.fits',''), \
                            coord='G', cmap=cool_cmap)
            plt.show()
    else:
        for i, maps in enumerate(healpix_maps):
            healpix_maps = hp.pixelfunc.ud_grade(healpix_maps, nside_out, \
                                                     pess=True)
        if kwargs['zscale'] == 'optimized':
            logger.info('Optimizing...')
            hp.mollview(healpix_maps, title=t.replace('.fits',''), \
                            coord='G', min=-5e-7, max=1e-7, cmap=cool_cmap)
            plt.show()  
        elif kwargs['zscale'] == 'log':
            logger.info('Optimizinglog z scale...')
            hp.mollview(healpix_maps, title=t.replace('.fits',''), \
                            coord='G', norm='log', cmap=cool_cmap)
            plt.show()  
        elif kwargs['zscale'] == 'hist':
            logger.info('Optimizinglog z scale...')
            hp.mollview(healpix_maps, title=t.replace('.fits',''), \
                            coord='G', norm='hist', cmap=cool_cmap)
            plt.show()      
        else:
            hp.mollview(healpix_maps, title=t.replace('.fits',''), \
                            coord='G', cmap=cool_cmap)
            plt.show()