I = I0 flx_tolerance *= 2 f = lambda b: b * L - (1 - L / extrap_len) * np.tan(b * L) # info: add a small epsilon to the left bound to avoid # failure of root-finding algorithm BG = brentq( lambda b: b * L - (1 - L / extrap_len) * np.tan(b * L), .50000001 * np.pi / L, np.pi / L) diffsol_ref = lambda x: np.sin(BG * x) / x # integration of sin(x)/x yields 'sine integral func' # anorm, _ = sici(BG * L) # integration of (sin(BG*r)/r) r**2 dr yields anorm = (np.sin(BG * L) - BG * L * np.cos(BG * L)) / BG**2 Dktol, Dftol = 2e-3, 2e-2 # r = geomprogr_mesh(N=I, L=L, ratio=0.95) r = equivolume_mesh(I, 0, L, geo) lg.info('Reference critical length (L) is %.6f cm' % L) lg.info('Extrapolation distance (zeta*D) is %.3f cm' % extrap_len) xs_media, media = set_media(materials[m], L, m) data = input_data(xs_media, media, r, geo, LBC=LBC, RBC=0, per_unit_angle=True) # *** WARNING *** # The extrapolation length is a quite large w.r.t. to the problem # width in these problems. Therefore, the numerical solution can be
lg.info("*** UD2O-H2Ox-1-0-x ***") materials = change_H2O(materials) # -------------------------------------------------------------------------- # Problem 25 m, geo = 'UD2O', 'slab' case = "%s-H2O(1)-1-0-%s" % (m, get_geoid(geo)) I0 = 180 # to get 5 significative digits, i.e. error below 1 pcm. L0, L1, L = 9.214139, 1.830563, Lc[case] LBC = RBC = 0 I1 = I0 I = I1 + I0 widths_of_buffers = [L1, L + L0, 2 * L] xs_media, media = set_media(materials, widths_of_buffers, ['H2O', m, 'H2O']) r = equivolume_mesh(I1, 0, widths_of_buffers[0], geo) for i in range(2): Lb, Le = widths_of_buffers[i], widths_of_buffers[i + 1] Ix = I0 if i % 2 == 0 else I1 r = np.append(r, equivolume_mesh(Ix, Lb, Le, geo)[1:]) data = input_data(xs_media, media, r, geo, LBC=LBC, RBC=RBC) slvr_opts = solver_options(iitmax=5, oitmax=5, ritmax=200, CMFD=True, pCMFD=False, Anderson_depth='auto') filename = os.path.join(odir, case + "_LBC%dRBC%d_I%d" % (LBC, RBC, I)) flx, k = run_calc_with_RM_its(data, slvr_opts, filename) np.testing.assert_allclose(k,
import logging as lg lg.info("*** Sood's test suite ***") lg.info("*** 1G heterogeneous isotropic scattering ***") lg.info("*** Ux-H2Ox-1-0-x ***") # -------------------------------------------------------------------------- # Problem 16 m, geo, nks = 'Ub', 'sphere', 4 case = "%s-H2O(1)-1-0-%s" % (m, get_geoid(geo)) L0, L1, L = 6.12745, 3.063725, Lc[case] LBC, RBC = 2, 0 I1 = I0 = 20 # to get error on k less than 10 pcm I = I1 + I0 xs_media, media = set_media(materials, [L0, L], [m, 'H2O']) r = equivolume_mesh(I0, 0, L0, geo) r = np.append(r, equivolume_mesh(I1, L0, L, geo)[1:]) data = input_data(xs_media, media, r, geo, LBC=LBC, RBC=RBC, per_unit_angle=True) slvr_opts = solver_options(iitmax=5, oitmax=5, ritmax=200, CMFD=True, pCMFD=False, Anderson_depth='auto', ks=np.full(I, nks)) filename = os.path.join(odir, case + "_LBC%dRBC%d_I%d" % (LBC, RBC, I)) flx, k = run_calc_with_RM_its(data, slvr_opts, filename) np.testing.assert_allclose(k, 1.0, atol=1.e-4, err_msg=case + ": criticality not verified") # Problem 18 m = 'Uc'
geometry_type, LBC=2, RBC=2) # ks is needed anyway when validating the input solver options k, flx = solve_cpm1D(Homog2GSlab_data, solver_options(ks=np.full(I, 0))) flxinf = np.dot(np.linalg.inv(np.diag(st) - ss[:,:,0]), chi) kinf = np.dot(nsf, flxinf) # 1.07838136 flxinf *= np.linalg.norm(flx[:, 0]) / np.linalg.norm(flxinf) np.testing.assert_allclose(flx, np.tile(flxinf, (I, 1)).T, err_msg="flx-inf not verified") np.testing.assert_allclose(k, kinf, atol=1.e-7, err_msg="k-inf not verified") # solve the MC2011 problem lg.info("Solve the MC2011 problem by CPM in the " + geometry_type) # L *= 2; media = [['HM', L]] I = 100 # number of cells in the spatial mesh r = equivolume_mesh(I, 0, L, geometry_type) # r = geomprogr_mesh(I, 0, L, ratio=1.005) # warning: remind that the solution in half slab use white reflection # at the center, introducing some error! Homog2GSlab_data = input_data(xs_media, media, r, geometry_type, LBC=0, RBC=2) # ks is needed anyway when validating the input solver options k, flx = solve_cpm1D(Homog2GSlab_data, solver_options(ks=np.full(I, 0)), vrbs=False) kref = 0.744417 np.testing.assert_allclose(k, kref, atol=1.e-3, err_msg="ref k of MC2011 not verified") lg.info("k verified up to about three significant digits") lg.info("Reference k from S16 is %.6f" % kref)
lg.info("*** PUx-H2Ox-1-0-x ***") # -------------------------------------------------------------------------- # Problem 3 m, geo = 'PUa', 'slab' LBC, RBC = 0, 0 case = "%s-H2O(1)-1-0-%s" % (m, get_geoid(geo)) L0, L1, L = 1.47840, 3.063725, Lc[case] I0 = 80 # nb. of cells in the fuel I1 = I0 * 2 I = I0 + I1 widths_of_buffers = [2 * L0, 2 * L0 + L1] xs_media, media = set_media(materials, widths_of_buffers, [m, 'H2O']) r = equivolume_mesh(I0, 0, widths_of_buffers[0], geo) r = np.append(r, equivolume_mesh(I1, *widths_of_buffers, geo)[1:]) data = input_data(xs_media, media, r, geo, LBC=LBC, RBC=RBC) slvr_opts = solver_options(iitmax=5, oitmax=5, ritmax=200, CMFD=True, pCMFD=False, Anderson_depth='auto') filename = os.path.join(odir, case + "_LBC%dRBC%d_I%d" % (LBC, RBC, I)) flx, k = run_calc_with_RM_its(data, slvr_opts, filename) np.testing.assert_allclose(k, 1.0, atol=1.e-5, err_msg=case + ": criticality not verified")