def main(nome,nTest=None,K_0=20,K_1=10,K_2=5,K_3=3,K_4=20,dataset='ml-100k',path='/home/matteo/Desktop/DataMining/ml-100k/',X=0,Y=0): if dataset == 'ml-100k': path='/home/matteo/Desktop/DataMining/ml-100k/' X=1682 Y=943 elif dataset == 'ml-1m': path='/home/matteo/Desktop/DataMining/ml-1m/' X=3952 Y=6040 elif dataset == 'yelp': path='/home/matteo/Desktop/DataMining/yelp_dataset_academic/' X=13490 Y=130873 PATH = __initData(path,nome,dataset,K_0,nTest) print PATH # ############ Costruzione dataset SENZA ITEM con MINIMO RW 5 ############ # #Seleziono tutto il dataset come data training (dataset = 0) # __WriteMatrixCF__(0,path,PATH,X,Y) # #Estraggo la lista degli oggetti # Item = __getMatrixCF_ITEM__(PATH,X) # #Estraggo la lista degli id degli oggetti con meno di 5 rw # Itemlist = __listaItemEliminati__(Item,5) # #Ricalcolo data-set e training-set sulla base della percentuale K_0, tutti le rw contenenti # # gli oggetti in Itemlist saranno eliminate # __WriteMatrixCF__(K_0,path,PATH,X,Y,Itemlist) # # #Istanzio le liste di utenti per i dati di training e test set # User = __getMatrixCF__(PATH) # UserTest = __getMatrixCF_TESTSET__(PATH) # # ######################################################################### ############ Costruzione dataset sulla base del parametro K_0 ############ __WriteMatrixCF__(K_0,path,PATH,X,Y) Item = __getMatrixCF_ITEM__(PATH,X) User = __getMatrixCF__(PATH) UserTest = __getMatrixCF_TESTSET__(PATH) ########################################################################## print "----------------" #Calcolo/Leggo la matrice di Similarità SimMatrix = __simil_UxU_ObjFull__(User,K_4,Y,PATH,Written=True) #Lancio il Racommander System sul dataset __addNote(path,__recSystemObjUxU__(User,UserTest,SimMatrix,PATH,K_1,K_2,K_3)) print "----------------"
def main(nome, nTest=None, K_0=20, K_1=10, K_2=5, K_3=3, K_4=20, dataset='ml-100k', path='/home/matteo/Desktop/DataMining/ml-100k/', X=0, Y=0): if dataset == 'ml-100k': path = '/home/matteo/Desktop/DataMining/ml-100k/' X = 1682 Y = 943 elif dataset == 'ml-1m': path = '/home/matteo/Desktop/DataMining/ml-1m/' X = 3952 Y = 6040 elif dataset == 'yelp': path = '/home/matteo/Desktop/DataMining/yelp_dataset_academic/' X = 13490 Y = 130873 PATH = __initData(path, nome, dataset, K_0, nTest) print PATH # ############ Costruzione dataset SENZA ITEM con MINIMO RW 5 ############ # #Seleziono tutto il dataset come data training (dataset = 0) # __WriteMatrixCF__(0,path,PATH,X,Y) # #Estraggo la lista degli oggetti # Item = __getMatrixCF_ITEM__(PATH,X) # #Estraggo la lista degli id degli oggetti con meno di 5 rw # Itemlist = __listaItemEliminati__(Item,5) # #Ricalcolo data-set e training-set sulla base della percentuale K_0, tutti le rw contenenti # # gli oggetti in Itemlist saranno eliminate # __WriteMatrixCF__(K_0,path,PATH,X,Y,Itemlist) # # #Istanzio le liste di utenti per i dati di training e test set # User = __getMatrixCF__(PATH) # UserTest = __getMatrixCF_TESTSET__(PATH) # # ######################################################################### ############ Costruzione dataset sulla base del parametro K_0 ############ __WriteMatrixCF__(K_0, path, PATH, X, Y) Item = __getMatrixCF_ITEM__(PATH, X) User = __getMatrixCF__(PATH) UserTest = __getMatrixCF_TESTSET__(PATH) ########################################################################## print "----------------" #Calcolo/Leggo la matrice di Similarità SimMatrix = __simil_UxU_ObjFull__(User, K_4, Y, PATH, Written=True) #Lancio il Racommander System sul dataset __addNote( path, __recSystemObjUxU__(User, UserTest, SimMatrix, PATH, K_1, K_2, K_3)) print "----------------"
def main(nome, test, nTest=None, dataset='ml-100k', path='/home/matteo/Desktop/DataMining/ml-100k/', X=0, Y=0): if dataset == 'ml-100k': path = '/home/matteo/Desktop/DataMining/ml-100k/' X = 1682 Y = 943 elif dataset == 'ml-1m': path = '/home/matteo/Desktop/DataMining/ml-1m/' X = 3952 Y = 6040 elif dataset == 'yelp': path = '/home/matteo/Desktop/DataMining/yelp_dataset_academic/' X = 13490 Y = 130873 PATH = __initData(path, nome, dataset, test, nTest) print PATH #__addNote(path,'prova note') __WriteMatrixCF__(test, path, PATH, X, Y) Item = __getMatrixCF_ITEM__(PATH, X) User = __getMatrixCF__(PATH) UserTest = __getMatrixCF_TESTSET__(PATH) # # print "----------------" # # SimMatrix = __simil_UxU_ObjFull__(User,test,Y,PATH,Written=False) # # # __addNote(path,__recSystemObjUxU__(test,User,UserTest,SimMatrix,Y,PATH)) # # print "----------------" # # SimiliIxI = __simil_IxI_ObjFull__(Item,test,X,PATH,Written=False) # # __addNote(path,__recSystemObjIxI__(test,User,UserTest,Item,SimiliIxI,Y,PATH)) # # # print "----------------" # SimiliIxI2 = __simil_IxI_ObjFull2__(Item, test, X, PATH, Written=False) __addNote( path, __recSystemObjIxI__(test, User, UserTest, Item, SimiliIxI2, Y, PATH)) #calcolo con item in meno del dataset su base percentile # __WriteMatrixCF__(test,path,PATH,X,Y) # Item = __getMatrixCF_ITEM__(PATH,X) # Itemlist = __listaItemEliminati__(Item,13) # __WriteMatrixCF__(test,path,PATH,X,Y,Itemlist) # Item = __getMatrixCF_ITEM__(PATH,X) # User = __getMatrixCF__(PATH) # UserTest = __getMatrixCF_TESTSET__(PATH) print "----------------" # SimMatrix = __simil_UxU_ObjFull__(User,test,Y,PATH,Written=False) # __addNote(path,__recSystemObjUxU__(test,User,UserTest,SimMatrix,Y,PATH)) # print "----------------" # SimMatrix = __simil_UxU_ObjFull2__(User,test,Y,PATH,Written=False) # __addNote(path,__recSystemObjUxU__(test,User,UserTest,SimMatrix,Y,PATH)) # print "----------------" # SimiliIxI = __simil_IxI_ObjFull__(Item,test,X,PATH,Written=False) # __addNote(path,__recSystemObjIxI__(test,User,UserTest,Item,SimiliIxI,Y,PATH)) # print "----------------" #SimiliIxI2 = __simil_IxI_ObjFull2__(Item,test,X,PATH,Written=False) #__addNote(path,__recSystemObjIxI__(test,User,UserTest,Item,SimiliIxI2,Y,PATH)) #if __name__ == "__main__": #main('TEST_FullData',10,0,dataset='ml-1m')
def main(nome,test,nTest=None,dataset='ml-100k',path='/home/matteo/Desktop/DataMining/ml-100k/',X=0,Y=0): if dataset == 'ml-100k': path='/home/matteo/Desktop/DataMining/ml-100k/' X=1682 Y=943 elif dataset == 'ml-1m': path='/home/matteo/Desktop/DataMining/ml-1m/' X=3952 Y=6040 elif dataset == 'yelp': path='/home/matteo/Desktop/DataMining/yelp_dataset_academic/' X=13490 Y=130873 PATH = __initData(path,nome,dataset,test,nTest) print PATH #__addNote(path,'prova note') __WriteMatrixCF__(test,path,PATH,X,Y) Item = __getMatrixCF_ITEM__(PATH,X) User = __getMatrixCF__(PATH) UserTest = __getMatrixCF_TESTSET__(PATH) # # print "----------------" # # SimMatrix = __simil_UxU_ObjFull__(User,test,Y,PATH,Written=False) # # # __addNote(path,__recSystemObjUxU__(test,User,UserTest,SimMatrix,Y,PATH)) # # print "----------------" # # SimiliIxI = __simil_IxI_ObjFull__(Item,test,X,PATH,Written=False) # # __addNote(path,__recSystemObjIxI__(test,User,UserTest,Item,SimiliIxI,Y,PATH)) # # # print "----------------" # SimiliIxI2 = __simil_IxI_ObjFull2__(Item,test,X,PATH,Written=False) __addNote(path,__recSystemObjIxI__(test,User,UserTest,Item,SimiliIxI2,Y,PATH)) #calcolo con item in meno del dataset su base percentile # __WriteMatrixCF__(test,path,PATH,X,Y) # Item = __getMatrixCF_ITEM__(PATH,X) # Itemlist = __listaItemEliminati__(Item,13) # __WriteMatrixCF__(test,path,PATH,X,Y,Itemlist) # Item = __getMatrixCF_ITEM__(PATH,X) # User = __getMatrixCF__(PATH) # UserTest = __getMatrixCF_TESTSET__(PATH) print "----------------" # SimMatrix = __simil_UxU_ObjFull__(User,test,Y,PATH,Written=False) # __addNote(path,__recSystemObjUxU__(test,User,UserTest,SimMatrix,Y,PATH)) # print "----------------" # SimMatrix = __simil_UxU_ObjFull2__(User,test,Y,PATH,Written=False) # __addNote(path,__recSystemObjUxU__(test,User,UserTest,SimMatrix,Y,PATH)) # print "----------------" # SimiliIxI = __simil_IxI_ObjFull__(Item,test,X,PATH,Written=False) # __addNote(path,__recSystemObjIxI__(test,User,UserTest,Item,SimiliIxI,Y,PATH)) # print "----------------" #SimiliIxI2 = __simil_IxI_ObjFull2__(Item,test,X,PATH,Written=False) #__addNote(path,__recSystemObjIxI__(test,User,UserTest,Item,SimiliIxI2,Y,PATH)) #if __name__ == "__main__": #main('TEST_FullData',10,0,dataset='ml-1m')