示例#1
0
 def __init__(self, training_sampler: Sampler, test_sampler: Sampler,
              graph: Graph, hidden_layer_sizes: List[int],
              concatenate_features: bool):
     super().__init__(training_sampler, test_sampler, graph,
                      hidden_layer_sizes, concatenate_features)
     self._sum_cache: List[List[NDArray]] = \
         [[]] + [[nd.zeros(x.shape) for x in v] for v in self._feature_layers[:-1]]
     """ Contains sum of features on the previous layer """
     # Initialize and fill the cache using all features with current weights
     for layer in range(1, self._num_layers):
         for vertex in graph.vertices:
             subgraph = Subgraph(vertex.id, len(vertex.neighbors), [
                 Subgraph(v.id, len(v.neighbors), [])
                 for v in vertex.neighbors
             ])
             self._feature_layers[layer][
                 vertex.id] = self.compute_vertex_layer(
                     layer, vertex.id, subgraph)
示例#2
0
 def __collect(self, vertices: List[Vertex], layer: int) -> List[Subgraph]:
     res: List[Subgraph] = []
     for v in vertices:
         if v in self.cache[layer]:
             res.append(self.cache[layer][v])
         else:
             n_subgraphs = [] if layer == 0 else self.__collect(
                 v.neighbors, layer - 1)
             subgraph = Subgraph(v.id, v.degree, n_subgraphs)
             self.cache[layer][v] = subgraph
             res.append(subgraph)
     return res
 def __collect(self, vertices: List[Vertex], layer: int) -> List[Subgraph]:
     res: List[Subgraph] = []
     for v in vertices:
         if layer == 0:
             neighbors_subgraphs = []
         else:
             neighbors = v.neighbors \
                 if len(v.neighbors) <= self._neighbors_count \
                 else random.sample(v.neighbors, self._neighbors_count)
             neighbors_subgraphs = self.__collect(neighbors, layer - 1)
         res.append(Subgraph(v.id, v.degree, neighbors_subgraphs))
     return res
示例#4
0
    def __collect(self, vertices: List[Vertex], layer: int) -> List[Subgraph]:
        collected_vertices: List[List[Vertex]] = [vertices]
        for layer in range(0, self._layers_count - 1):
            cur_vertices = collected_vertices[layer]

        for v in vertices:
            if layer == 0:
                neighbors_subgraphs = []
            else:
                neighbors = v.neighbors \
                    if len(v.neighbors) <= self._neighbors_count \
                    else random.sample(v.neighbors, self._neighbors_count)
                neighbors_subgraphs = self.__collect(neighbors, layer - 1)
            res.append(Subgraph(v.id, v.degree, neighbors_subgraphs))
        return res
示例#5
0
 def sample(self, root_vertices: List[Vertex]) -> List[Subgraph]:
     return [Subgraph(v.id, v.degree, []) for v in root_vertices]
示例#6
0
 def __collect(self, vertices: List[Vertex], layer: int) -> List[Subgraph]:
     return [
         Subgraph(v.id, v.degree,
                  [] if layer == 0 else self.__collect([v], layer - 1))
         for v in vertices
     ]
示例#7
0
        def testTensorNetwork(self):
            A_indices = (2,3,4,6)
            B_indices = (7,2,8)
            C_indices = (9,8,3,10)
            D_indices = (11,7,9,4)
            E_indices = (6,10,11)

            A = rand(2,5,3,7)
            B = rand(4,2,6)
            C = rand(6,6,5,8)
            D = rand(4,4,6,3)
            E = rand(7,8,4)

            g = make_graph(
                (A,A_indices),
                (B,B_indices),
                (C,C_indices),
                (D,D_indices),
                (E,E_indices),
            )

            self.assertTrue(allclose(
                g.fully_contract()[0],
                make_contractor_from_implicit_joins([A_indices,B_indices,C_indices,D_indices,E_indices],[])(A,B,C,D,E),
                rtol=1e-10
            ))

            tensors = (A,B,C,D,E)
            specifications = (A_indices,B_indices,C_indices,D_indices,E_indices)

            for selected in xrange(1,1<<5):
                selected_tensors = [i for i in xrange(5) if ((selected >> i) % 2) == 1]
                selected_specifications = [specifications[i] for i in selected_tensors]
                excluded_tensors = [i for i in xrange(5) if ((selected >> i) % 2) == 0]

                result_indices = []
                connected_tensors = []

                for i in excluded_tensors:
                    tensor_is_connected = True
                    for index in specifications[i]:
                        found = False
                        for j in selected_tensors:
                            if index in specifications[j]:
                                found = True
                                break
                        if found: # i.e., if this index is connected to the network
                            result_indices.append(index)
                            tensor_is_connected = True
                    if tensor_is_connected:
                        connected_tensors.append(i)

                f_eval = make_contractor_from_implicit_joins(selected_specifications,result_indices)(*[tensors[i] for i in selected_tensors])

                s = Subgraph(g)
                for i in selected_tensors:
                    s.add_node(i)
                s.merge_all()
                g_eval = s.get_resulting_matrices(connected_tensors)[0]

                self.assertTrue(allclose(f_eval,g_eval,rtol=1e-10))