def prepare(filePath: str) -> Tuple[List[str], pd.DataFrame]: files = os.listdir(filePath) # 已处理文件 dataOld = readJson(saveM['Record']['Path'], funcClass) filesNew = list(set(files).difference(set(dataOld))) # 读取权重数据 weight = getData(readM['weight500'], DBN.PKL) return filesNew, weight
def prepare(filePath: str) -> List[Tuple[str, str]]: with open(filePath, 'rb') as f: UpLimitStock = pickle.load(f) data = (UpLimitStock['date'] + '_' + UpLimitStock['stock_id']).to_list() # 已处理文件 dataOld = readJson(saveM['Record']['Path'], funcClass) # 数据参数 UpLimitStock_ID = list(set(data).difference(set(dataOld))) return UpLimitStock_ID
def prepare(filePath: str) -> List[str]: folderFiles = os.listdir(filePath) # 已处理文件 dataOld = readJson(saveM['Record']['Path'], funcClass) # 过滤文件夹 folderFiles = [file_ for file_ in folderFiles if len(file_.split('.')) == 1] # 生成文件夹 subFolderPath = [] for subFolder in folderFiles: subFolders2 = os.listdir(os.path.join(filePath, subFolder)) # 过滤已处理文件 subFoldersE = list(set(subFolders2).difference(set(dataOld))) subFolderPath += [os.path.join(os.path.join(filePath, subFolder), x) for x in subFoldersE] return subFolderPath
def prepare(filePath: str) -> List[str]: files = os.listdir(filePath) # 已处理文件 dataOld = readJson(saveM['Record']['Path'], funcClass) filesNew = list(set(files).difference(set(dataOld))) return filesNew