def run_image_learn(self): is_manual_train = VARIABLE['hand_border'] self.tree = P2DHMMFactory.make(P2DHMM.P2DHMM_TYPE_TREE) self.background = P2DHMMFactory.make(P2DHMM.P2DHMM_TYPE_BACKGROUND) for root, dirs, files in os.walk(VARIABLE['directory']): for file in files: if file.endswith('.bmp'): print(root+"/"+file) self.piximage = piximage2.PixImage(root+"/"+file) self.display() if is_manual_train: self.tree.manual_train(self.piximage) else: self.tree.auto_train(self.piximage.image_ycrcb) self.tree.summarize() self.tree.from_summaries() self.background.train(self.piximage.image_ycrcb) for ss_state in self.background.model.states: if ss_state.name == self.background.superstate_names[0]: for s_state in ss_state.distribution.model.states: if s_state.name == ss_state.distribution.state_names[0]: s_state.distribution = self.tree.backgorund_state.distribution
def run_image_denoise(self): self.tree = P2DHMMFactory.make(P2DHMM.P2DHMM_TYPE_TREE) self.tree.manual_train(self.piximage)