# update parameters gamma = 0.99 tau = 0.001 hmm_state = 10 ## ------------------------------ # define model model = HNRN(max_buffer=MAX_BUFFER, state_dim=STATE_DIM, sensor_dim=SENSOR_DIM, target_dim=TARGET_DIM, action_dim=ACTION_DIM, mu=mu, theta=theta, sigma=sigma, gamma=gamma, tau=tau, train_type=TRAIN_TYPE, actor_lr=actor_lr, critic_lr=critic_lr, batch_size=batch_size, hmm_state=hmm_state) # define ROS service client and messages rospy.wait_for_service('/gazebo_env_io/pytorch_io_service') pytorch_io_service = rospy.ServiceProxy('/gazebo_env_io/pytorch_io_service', SimpleCtrl) TERMINAL_REWARD, COLLISION_REWARD, SURVIVE_REWARD = utils.get_parameters( '../../gazebo_drl_env/param/env.yaml')
theta = 2 sigma = 0.2 # learning rate actor_lr = 1e-4 critic_lr = 1e-3 batch_size = 256 # update parameters gamma = 0.99 tau = 0.001 hmm_state = 10 ## ------------------------------ # define model model = HNRN(max_buffer=0, state_dim=STATE_DIM, sensor_dim=SENSOR_DIM, action_dim=ACTION_DIM, mu=mu, theta=theta, sigma=sigma, gamma=gamma, tau=tau, train_type=TRAIN_TYPE, actor_lr=actor_lr, critic_lr=critic_lr, batch_size=batch_size, hmm_state=hmm_state) # define ROS service client and messages rospy.wait_for_service('/gazebo_env_io/pytorch_io_service') pytorch_io_service = rospy.ServiceProxy('/gazebo_env_io/pytorch_io_service', SimpleCtrl) TERMINAL_REWARD, COLLISION_REWARD, SURVIVE_REWARD = utils.get_parameters('../../gazebo_drl_env/param/env.yaml') # load parameters of pre-trained CA model.load_models() model.copy_weights() model.noise.reset() print('[*] State Dimensions : {}'.format(STATE_DIM)) print('[*] Sensor Dimensions : {}'.format(SENSOR_DIM)) print('[*] Action Dimensions : {}'.format(ACTION_DIM))
# update parameters gamma = 0.99 tau = 0.001 hmm_state = 10 ## ------------------------------ # define model model = HNRN(max_buffer=0, state_dim=STATE_DIM, sensor_dim=SENSOR_DIM, target_dim=TARGET_DIM, action_dim=ACTION_DIM, mu=mu, theta=theta, sigma=sigma, gamma=gamma, tau=tau, train_type=TRAIN_TYPE, actor_lr=actor_lr, critic_lr=critic_lr, batch_size=batch_size, hmm_state=hmm_state) # define ROS service client and messages rospy.wait_for_service('/gazebo_env_io/pytorch_io_service') pytorch_io_service = rospy.ServiceProxy('/gazebo_env_io/pytorch_io_service', SimpleCtrl) TERMINAL_REWARD, COLLISION_REWARD, SURVIVE_REWARD = utils.get_parameters( '../../gazebo_drl_env/param/env.yaml')
batch_size = 256 # update parameters gamma = 0.99 tau = 0.001 hmm_state = 10 ## ------------------------------ # define model model = HNRN(max_buffer=0, state_dim=STATE_DIM, sensor_dim=SENSOR_DIM, action_dim=ACTION_DIM, mu=mu, theta=theta, sigma=sigma, gamma=gamma, tau=tau, train_type=TRAIN_TYPE, actor_lr=actor_lr, critic_lr=critic_lr, batch_size=batch_size, hmm_state=hmm_state) # define ROS service client and messages rospy.wait_for_service('/gazebo_env_io/pytorch_io_service') pytorch_io_service = rospy.ServiceProxy('/gazebo_env_io/pytorch_io_service', SimpleCtrl) TERMINAL_REWARD, COLLISION_REWARD, SURVIVE_REWARD = utils.get_parameters( '../../gazebo_drl_env/param/env.yaml') # load parameters of pre-trained model