def doCounters(datasetsEmb): eventCounter = tauEmbedding.EventCounterMany(datasetsEmb, normalize=True) #row = "btagging scale factor" row = "deltaPhiTauMET<160" #row = "deltaPhiTauMET<130" table = eventCounter.getMainCounterTable() table.keepOnlyRows([row]) result = counter.CounterTable() def addRow(name, newktt, nsignal): fraction = None if nsignal != None: fraction = nsignal.clone() total = nsignal.clone() total.add(newktt) fraction.divide(total) fraction.multiply(dataset.Count(100)) result.appendRow(counter.CounterRow(name, ["EWK+tt events", "Signal events", "Signal fraction (\%)"], [newktt, nsignal, fraction])) addRow("No signal", table.getCount(irow=0, colName="EWKMC"), None) ewkWithSignal = table.getCount(irow=0, colName="EWKScaled") for mass in [80, 90, 100, 120, 140, 150, 155, 160]: addRow("H+ M%d"%mass, ewkWithSignal, table.getCount(irow=0, colName="TTToHplus_M%d"%mass)) #cellFormat = counter.TableFormatLaTeX(counter.CellFormatTeX(valueFormat='%.3f')) cellFormat = counter.TableFormatLaTeX(counter.CellFormatTeX(valueFormat='%.4f', withPrecision=2)) print result.format(cellFormat)
def doCounters(datasetsEmb, datasetsSig, datasetName): lumi = datasetsEmb.getLuminosity() # Counters eventCounterEmb = tauEmbedding.EventCounterMany(datasetsEmb) eventCounterSig = counter.EventCounter(datasetsSig) def isNotThis(name): return name != datasetName eventCounterEmb.removeColumns(filter(isNotThis, datasetsEmb.getAllDatasetNames())) eventCounterSig.removeColumns(filter(isNotThis, datasetsSig.getAllDatasetNames())) eventCounterSig.normalizeMCToLuminosity(lumi) tableEmb = eventCounterEmb.getMainCounterTable() tableSig = eventCounterSig.getMainCounterTable() table = counter.CounterTable() col = tableEmb.getColumn(name=datasetName) col.setName(datasetName+" emb") table.appendColumn(col) col = tableSig.getColumn(name=datasetName) col.setName(datasetName+" norm") table.appendColumn(col) table.keepOnlyRows([ "njets", "MET", "btagging", "btagging scale factor", "deltaPhiTauMET<160", "deltaPhiTauMET<130", ]) table.renameRows({"njets": "tau ID"}) return table
def doCounters(dirEmbs): datasetsEmb = tauEmbedding.DatasetsMany(dirEmbs, analysisEmb+"Counters", normalizeMCByLuminosity=True) datasetsEmb.forEach(plots.mergeRenameReorderForDataMC) datasetsEmb.setLumiFromData() datasetsEmb.remove(filter(lambda name: "HplusTB" in name, datasetsEmb.getAllDatasetNames())) datasetsEmb.remove(filter(lambda name: "TTToHplus" in name, datasetsEmb.getAllDatasetNames())) eventCounter = tauEmbedding.EventCounterMany(datasetsEmb) mainTable = eventCounter.getMainCounterTable() ewkDatasets = ["WJets", "TTJets", "DYJetsToLL", "SingleTop", "Diboson"] def ewkSum(table): table.insertColumn(1, counter.sumColumn("EWKMCsum", [table.getColumn(name=name) for name in ewkDatasets])) ewkSum(mainTable) datasetsEmb.close() return mainTable.getRow(name="deltaPhiTauMET<160")
def doCounters(datasetsEmb): eventCounter = tauEmbedding.EventCounterMany(datasetsEmb, counters=analysisEmb + counters, normalize=True) mainTable = eventCounter.getMainCounterTable() ewkDatasets = ["WJets", "TTJets", "DYJetsToLL", "SingleTop", "Diboson"] def ewkSum(table): table.insertColumn( 1, counter.sumColumn( "EWKMCsum", [table.getColumn(name=name) for name in ewkDatasets])) ewkSum(mainTable) cellFormat = counter.TableFormatText( counter.CellFormatTeX(valueFormat='%.3f')) print mainTable.format(cellFormat)
def doCounters(datasetsEmb, datasetsSig, datasetName, normalizeEmb=True): lumi = datasetsEmb.getLuminosity() # Counters eventCounterEmb = tauEmbedding.EventCounterMany( datasetsEmb, normalize=normalizeEmb) #, counters=analysisEmb+"/counters") eventCounterSig = counter.EventCounter(datasetsSig) def isNotThis(name): return name != datasetName eventCounterEmb.removeColumns( filter(isNotThis, datasetsEmb.getAllDatasetNames())) eventCounterSig.removeColumns( filter(isNotThis, datasetsSig.getAllDatasetNames())) eventCounterSig.normalizeMCToLuminosity(lumi) tdCount = dataset.TreeDraw("dummy", weight=tauEmbedding.signalNtuple.weightBTagging) tdCountMET = tdCount.clone(weight=tauEmbedding.signalNtuple.weight, selection=tauEmbedding.signalNtuple.metCut) tdCountBTagging = tdCount.clone( selection=And(tauEmbedding.signalNtuple.metCut, tauEmbedding.signalNtuple.bTaggingCut)) tdCountDeltaPhi160 = tdCount.clone(selection=And( tauEmbedding.signalNtuple.metCut, tauEmbedding.signalNtuple. bTaggingCut, tauEmbedding.signalNtuple.deltaPhi160Cut)) tdCountDeltaPhi130 = tdCount.clone(selection=And( tauEmbedding.signalNtuple.metCut, tauEmbedding.signalNtuple. bTaggingCut, tauEmbedding.signalNtuple.deltaPhi130Cut)) def addRow(name, td): tdEmb = td.clone(tree=analysisEmb + "/tree") tdSig = td.clone(tree=analysisSig + "/tree") eventCounterEmb.mainCounterAppendRow(name, tdEmb) eventCounterSig.getMainCounter().appendRow(name, tdSig) # addRow("JetsForEffs", tdCount.clone(weight=tauEmbedding.signalNtuple.weight)) # addRow("METForEffs", tdCountMET) # addRow("BTagging (SF)", tdCountBTagging) # addRow("DeltaPhi < 160", tdCountDeltaPhi160) # addRow("BTagging (SF) again", tdCountBTagging) # addRow("DeltaPhi < 130", tdCountDeltaPhi130) table = counter.CounterTable() col = eventCounterEmb.getMainCounterTable().getColumn(name=datasetName) col.setName("Embedded") table.appendColumn(col) col = eventCounterSig.getMainCounterTable().getColumn(name=datasetName) col.setName("Normal") table.appendColumn(col) tableTau = counter.CounterTable() tmp = "TauIDPassedEvt::TauSelection_HPS" col = eventCounterEmb.getSubCounterTable(tmp).getColumn(name=datasetName) col.setName("Embedded") tableTau.appendColumn(col) col = eventCounterSig.getSubCounterTable(tmp).getColumn(name=datasetName) col.setName("Normal") tableTau.appendColumn(col) postfix = "" if not normalizeEmb: postfix = "_notEmbNormalized" fname = "counters_selections_%s%s.txt" % (datasetName, postfix) f = open(fname, "w") f.write(table.format()) f.write("\n") f.write(tableTau.format()) f.close() print "Printed selection counters to", fname if not normalizeEmb: return # Calculate efficiencies table.keepOnlyRows([ "njets", "MET", "btagging", "btagging scale factor", "DeltaPhi(Tau,MET) upper limit" ]) # btag SF efficiency w.r.t. MET row = table.getRow(name="MET") row.setName("METForEff") table.insertRow(3, row) tableEff = counter.CounterTable() tableEff.appendColumn( counter.efficiencyColumn("Embedded eff", table.getColumn(name="Embedded"))) tableEff.appendColumn( counter.efficiencyColumn("Normal eff", table.getColumn(name="Normal"))) tableEff.removeRow(name="METForEff") effFormat = counter.TableFormatText( counter.CellFormatTeX(valueFormat='%.4f', withPrecision=2)) # print table.format(effFormat) fname = "counters_selections_%s_eff.txt" % datasetName f = open(fname, "w") f.write(tableEff.format(effFormat)) f.close() print "Printed selection efficiencies to", fname
def doTauCounters(datasetsEmb, datasetsSig, datasetName, ntupleCacheEmb, ntupleCacheSig, normalizeEmb=True): lumi = datasetsEmb.getLuminosity() # Take unweighted counters for embedded, to get a handle on the muon isolation efficiency eventCounterEmb = tauEmbedding.EventCounterMany( datasetsEmb, counters="/" + tauAnalysisEmb + "Counters", normalize=normalizeEmb) eventCounterSig = counter.EventCounter(datasetsSig, counters="/" + tauAnalysisEmb + "Counters") def isNotThis(name): return name != datasetName eventCounterEmb.removeColumns( filter(isNotThis, datasetsEmb.getAllDatasetNames())) eventCounterSig.removeColumns( filter(isNotThis, datasetsSig.getAllDatasetNames())) eventCounterEmb.mainCounterAppendRows( ntupleCacheEmb.histogram("counters/weighted/counter")) eventCounterSig.getMainCounter().appendRows( ntupleCacheSig.histogram("counters/weighted/counter")) eventCounterSig.normalizeMCToLuminosity(lumi) table = counter.CounterTable() col = eventCounterEmb.getMainCounterTable().getColumn(name=datasetName) col.setName("Embedded") table.appendColumn(col) col = eventCounterSig.getMainCounterTable().getColumn(name=datasetName) col.setName("Normal") table.appendColumn(col) lastCountEmb = table.getCount(colName="Embedded", irow=table.getNrows() - 1) lastCountNormal = table.getCount(colName="Normal", irow=table.getNrows() - 1) postfix = "" if not normalizeEmb: postfix = "_notEmbNormalized" effFormat = counter.TableFormatLaTeX( counter.CellFormatTeX(valueFormat="%.4f", withPrecision=2)) countFormat = counter.TableFormatText( counter.CellFormatText(valueFormat="%.4f"), #columnSeparator=" ;" ) fname = "counters_tau_" + datasetName + postfix + ".txt" f = open(fname, "w") f.write(table.format(countFormat)) f.write("\n") try: ratio = lastCountNormal.clone() ratio.divide(lastCountEmb) f.write("Normal/embedded = %.4f +- %.4f\n\n" % (ratio.value(), ratio.uncertainty())) except ZeroDivisionError: pass f.close() print "Printed tau counters to", fname if not normalizeEmb: return tableEff = counter.CounterTable() tableEff.appendColumn( counter.efficiencyColumn("Embedded eff", table.getColumn(name="Embedded"))) tableEff.appendColumn( counter.efficiencyColumn("Normal eff", table.getColumn(name="Normal"))) embeddingMuonIsolationEff = tableEff.getCount( rowName="tauEmbeddingMuonsCount", colName="Embedded eff") embeddingTauIsolationEff = tableEff.getCount(rowName="Isolation", colName="Embedded eff") embeddingTotalIsolationEff = embeddingMuonIsolationEff.clone() embeddingTotalIsolationEff.multiply(embeddingTauIsolationEff) # Remove unnecessary rows rowNames = [ # "All events", "Decay mode finding", "Eta cut", "Pt cut", "Leading track pt", "Against electron", "Against muon", "Isolation", "One prong", "Rtau", ] tableEff.keepOnlyRows(rowNames) rowIndex = tableEff.getRowNames().index("Isolation") tableEff.insertRow( rowIndex, counter.CounterRow("Mu isolation (emb)", ["Embedded eff", "Normal eff"], [embeddingMuonIsolationEff, None])) tableEff.insertRow( rowIndex + 1, counter.CounterRow("Tau isolation (emb)", ["Embedded eff", "Normal eff"], [embeddingTauIsolationEff, None])) tableEff.setCount2(embeddingTotalIsolationEff, rowName="Isolation", colName="Embedded eff") #tableEff.setCount2(None, rowName="pT > 15", colName="Normal eff") #print table.format(effFormat) fname = "counters_tau_" + datasetName + "_eff.txt" f = open(fname, "w") f.write(tableEff.format(effFormat)) f.write("\n") f.close() print "Printed tau efficiencies to", fname
def doCounters(datasetsEmb): # All embedded events eventCounterAll = counter.EventCounter( datasetsEmb.getFirstDatasetManager(), counters=analysisEmbAll + counters) eventCounterAll.normalizeMCByLuminosity() tableAll = eventCounterAll.getMainCounterTable() tableAll.keepOnlyRows([ "All events", ]) tableAll.renameRows({"All events": "All embedded events"}) # Mu eff + Wtau mu eventCounterMuEff = counter.EventCounter( datasetsEmb.getFirstDatasetManager(), counters=analysisEmbNoTauEff + counters) eventCounterMuEff.normalizeMCByLuminosity() tauEmbedding.scaleNormalization(eventCounterMuEff) tableMuEff = eventCounterMuEff.getMainCounterTable() tableMuEff.keepOnlyRows(["All events"]) tableMuEff.renameRows({"All events": "mu eff + Wtaumu"}) # Event counts after embedding normalization, before tau trigger eff, # switch to calculate uncertainties of the mean of 10 trials eventCounterNoTauEff = tauEmbedding.EventCounterMany( datasetsEmb, counters=analysisEmbNoTauEff + counters) tableNoTauEff = eventCounterNoTauEff.getMainCounterTable() tableNoTauEff.keepOnlyRows([ "Trigger and HLT_MET cut", "njets", ]) tableNoTauEff.renameRows({ "Trigger and HLT_MET cut": "caloMET > 60", "njets": "tau ID" }) # Event counts after tau trigger eff eventCounter = tauEmbedding.EventCounterMany(datasetsEmb, counters=analysisEmb + counters) table = eventCounter.getMainCounterTable() table.keepOnlyRows([ "njets", "MET", "btagging scale factor", "deltaPhiTauMET<160", "deltaPhiTauMET<130" ]) table.renameRows({ "njets": "Tau trigger efficiency", "btagging scale factor": "b tagging" }) # Combine the rows to one table result = counter.CounterTable() for tbl in [tableAll, tableMuEff, tableNoTauEff, table]: for iRow in xrange(tbl.getNrows()): result.appendRow(tbl.getRow(index=iRow)) addMcSum(result) cellFormat = counter.TableFormatText( counter.CellFormatTeX(valueFormat='%.4f', withPrecision=2)) print result.format(cellFormat)
def doCounters(datasetsEmb, datasetsSig, datasetName): lumi = datasetsEmb.getLuminosity() treeDraw = dataset.TreeDraw("dummy", weight=weight) # Counters eventCounterEmb = tauEmbedding.EventCounterMany(datasetsEmb, counters=analysisEmb+"Counters") eventCounterSig = counter.EventCounter(datasetsSig, counters=analysisSig+"Counters") def isNotThis(name): return name != datasetName eventCounterEmb.removeColumns(filter(isNotThis, datasetsEmb.getAllDatasetNames())) eventCounterSig.removeColumns(filter(isNotThis, datasetsSig.getAllDatasetNames())) eventCounterSig.normalizeMCToLuminosity(lumi) #effFormat = counter.TableFormatText(counter.CellFormatText(valueFormat='%.4f')) #effFormat = counter.TableFormatConTeXtTABLE(counter.CellFormatTeX(valueFormat='%.4f')) effFormat = counter.TableFormatText(counter.CellFormatTeX(valueFormat='%.4f')) tdEmb = treeDraw.clone(tree=analysisEmb+"/tree") tdSig = treeDraw.clone(tree=analysisSig+"/tree") selectionsCumulative = [] tauSelectionsCumulative = [] def sel(name, selection): selectionsCumulative.append(selection) sel = selectionsCumulative[:] if len(tauSelectionsCumulative) > 0: sel += ["Sum$(%s) >= 1" % "&&".join(tauSelectionsCumulative)] sel = "&&".join(sel) eventCounterEmb.mainCounterAppendRow(name, tdEmb.clone(selection=sel)) eventCounterSig.getMainCounter().appendRow(name, tdSig.clone(selection=sel)) def tauSel(name, selection): tauSelectionsCumulative.append(selection) sel = selectionsCumulative[:] if len(tauSelectionsCumulative) > 0: sel += ["Sum$(%s) >= 1" % "&&".join(tauSelectionsCumulative)] sel = "&&".join(sel) eventCounterEmb.mainCounterAppendRow(name, tdEmb.clone(selection=sel)) eventCounterSig.getMainCounter().appendRow(name, tdSig.clone(selection=sel)) # sel("Primary vertex", tauEmbedding.tauNtuple.pvSelection) sel(">= 1 tau candidate", "Length$(taus_p4) >= 1") tauSel("Decay mode finding", tauEmbedding.tauNtuple.decayModeFinding) tauSel("pT > 15", tauEmbedding.tauNtuple.tauPtPreCut) tauSel("pT > 40", tauEmbedding.tauNtuple.tauPtCut) tauSel("eta < 2.1", tauEmbedding.tauNtuple.tauEtaCut) tauSel("leading track pT > 20", tauEmbedding.tauNtuple.tauLeadPt) tauSel("ECAL fiducial", tauEmbedding.tauNtuple.ecalFiducial) tauSel("againstElectron", tauEmbedding.tauNtuple.electronRejection) tauSel("againstMuon", tauEmbedding.tauNtuple.muonRejection) tauSel("isolation", tauEmbedding.tauNtuple.tightIsolation) tauSel("oneProng", tauEmbedding.tauNtuple.oneProng) tauSel("Rtau", tauEmbedding.tauNtuple.rtau) sel("3 jets", tauEmbedding.tauNtuple.jetEventSelection) sel("MET", tauEmbedding.tauNtuple.metSelection) sel("btag", tauEmbedding.tauNtuple.btagEventSelection) table = counter.CounterTable() col = eventCounterEmb.getMainCounterTable().getColumn(name=datasetName) col.setName("Embedded") table.appendColumn(col) col = eventCounterSig.getMainCounterTable().getColumn(name=datasetName) col.setName("Normal") table.appendColumn(col) col = table.getColumn(name="Embedded") table.insertColumn(1, counter.efficiencyColumn(col.getName()+" eff", col)) col = table.getColumn(name="Normal") table.appendColumn(counter.efficiencyColumn(col.getName()+" eff", col)) print "%s counters" % datasetName print table.format(effFormat) f = open("counters_"+datasetName+".txt", "w") f.write(table.format(effFormat)) f.write("\n") f.close()
def doCounters(datasetsEmb, datasetsSig, datasetName): lumi = datasetsEmb.getLuminosity() # Counters eventCounterEmb = tauEmbedding.EventCounterMany(datasetsEmb, counters=analysisEmb + "Counters/weighted") eventCounterSig = counter.EventCounter(datasetsSig, counters=analysisSig + "Counters/weighted") def isNotThis(name): return name != datasetName #eventCounterSig.normalizeMCToLuminosity(lumi) #print eventCounterSig.getMainCounterTable().format() #return eventCounterEmb.removeColumns( filter(isNotThis, datasetsEmb.getAllDatasetNames())) eventCounterSig.removeColumns( filter(isNotThis, datasetsSig.getAllDatasetNames())) eventCounterSig.normalizeMCToLuminosity(lumi) tdCount = dataset.TreeDraw("dummy", weight=weightBTagging) tdCountMET = tdCount.clone(weight=weight, selection=metCut) tdCountBTagging = tdCount.clone(selection=And(metCut, bTaggingCut)) tdCountDeltaPhi160 = tdCount.clone( selection=And(metCut, bTaggingCut, deltaPhi160Cut)) tdCountDeltaPhi130 = tdCount.clone( selection=And(metCut, bTaggingCut, deltaPhi130Cut)) def addRow(name, td): tdEmb = td.clone(tree=analysisEmb + "/tree") tdSig = td.clone(tree=analysisSig + "/tree") eventCounterEmb.mainCounterAppendRow(name, tdEmb) eventCounterSig.getMainCounter().appendRow(name, tdSig) addRow("JetsForEffs", tdCount.clone(weight=weight)) addRow("METForEffs", tdCountMET) addRow("BTagging (SF)", tdCountBTagging) addRow("DeltaPhi < 160", tdCountDeltaPhi160) addRow("BTagging (SF) again", tdCountBTagging) addRow("DeltaPhi < 130", tdCountDeltaPhi130) #effFormat = counter.TableFormatText(counter.CellFormatText(valueFormat='%.4f')) #effFormat = counter.TableFormatConTeXtTABLE(counter.CellFormatTeX(valueFormat='%.4f')) effFormat = counter.TableFormatText( counter.CellFormatTeX(valueFormat='%.4f')) f = open("counters_%s.txt" % datasetName, "w") for function, cname in [ (lambda c: c.getMainCounterTable(), "Main"), (lambda c: c.getSubCounterTable("TauIDPassedEvt::tauID_HPSTight"), "Tau") ]: tableEmb = function(eventCounterEmb) tableSig = function(eventCounterSig) table = counter.CounterTable() col = tableEmb.getColumn(name=datasetName) col.setName("Embedded") table.appendColumn(col) col = tableSig.getColumn(name=datasetName) col.setName("Normal") table.appendColumn(col) f.write("%s counters\n" % cname) f.write(table.format()) f.write("\n") if cname == "Main": #map(lambda t: t.keepOnlyRows([ table.keepOnlyRows([ "All events", "Trigger and HLT_MET cut", "taus == 1", #"trigger scale factor", "electron veto", "muon veto", "MET", "njets", "btagging", "btagging scale factor", "JetsForEffs", "METForEffs", "BTagging (SF)", "DeltaPhi < 160", "BTagging (SF) again", "DeltaPhi < 130" ]) #, [tableEmb, tableSig]) else: #map(lambda t: t.keepOnlyRows([ table.keepOnlyRows([ "AllTauCandidates", "DecayModeFinding", "TauJetPt", "TauJetEta", #"TauLdgTrackExists", "TauLdgTrackPtCut", "TauECALFiducialCutsCracksAndGap", "TauAgainstElectronCut", "TauAgainstMuonCut", #"EMFractionCut", "HPS", "TauOneProngCut", "TauRtauCut", ]) #, [tableEmb, tableSig]) col = table.getColumn(name="Embedded") table.insertColumn( 1, counter.efficiencyColumn(col.getName() + " eff", col)) col = table.getColumn(name="Normal") table.appendColumn( counter.efficiencyColumn(col.getName() + " eff", col)) f.write("%s counters\n" % cname) f.write(table.format(effFormat)) f.write("\n\n") f.close()
def doCounters(datasetsEmb): isCorrected = isinstance(datasetsEmb, result.DatasetsDYCorrection) if isCorrected: eventCounter = result.EventCounterDYCorrection(datasetsEmb, counters=analysisEmb + counters) else: scaleNormalization = analysisEmb != "signalAnalysis" eventCounter = tauEmbedding.EventCounterMany( datasetsEmb, counters=analysisEmb + counters, normalize=scaleNormalization) # Add counts sels = [] tdCount = treeDraw.clone(weight=weightBTagging) tdCountMET = tdCount.clone(weight=weight, selection="&&".join(sels + [metCut])) tdCountBTagging = tdCount.clone(selection="&&".join(sels + [metCut, bTaggingCut])) tdCountDeltaPhi160 = tdCount.clone( selection="&&".join(sels + [metCut, bTaggingCut, deltaPhi160Cut])) tdCountDeltaPhi130 = tdCount.clone( selection="&&".join(sels + [metCut, bTaggingCut, deltaPhi130Cut])) tdCountDeltaPhi90 = tdCount.clone( selection="&&".join(sels + [metCut, bTaggingCut, deltaPhi90Cut])) eventCounter.mainCounterAppendRow( "JetsForEffs", tdCount.clone(weight=weight, selection="&&".join(sels))) eventCounter.mainCounterAppendRow("METForEffs", tdCountMET) eventCounter.mainCounterAppendRow("BTagging", tdCountBTagging) eventCounter.mainCounterAppendRow("DeltaPhi < 160", tdCountDeltaPhi160) eventCounter.mainCounterAppendRow("DeltaPhi < 130", tdCountDeltaPhi130) eventCounter.mainCounterAppendRow("DeltaPhi < 90", tdCountDeltaPhi90) if not isCorrected: td1 = tdCount.clone(selection=metCut + "&&" + bTaggingCut + "&& (tecalometNoHF_p4.Pt() > 60)") td2 = tdCount.clone(selection=metCut + "&&" + bTaggingCut + "&& (tecalomet_p4.Pt() > 60)") td3 = dataset.TreeDrawCompound( td1, { "SingleMu_Mu_170722-172619_Aug05": td2, "SingleMu_Mu_172620-173198_Prompt": td2, "SingleMu_Mu_173236-173692_Prompt": td2, }) eventCounter.mainCounterAppendRow("BTagging+CaloMetNoHF", td1) eventCounter.mainCounterAppendRow("BTagging+CaloMet", td2) eventCounter.mainCounterAppendRow("BTagging+CaloMet(NoHF)", td3) #(mainTable, mainTableChi2) = eventCounter.getMainCounterTableFit() mainTable = eventCounter.getMainCounterTable() ewkDatasets = ["WJets", "TTJets", "DYJetsToLL", "SingleTop", "Diboson"] allDatasets = None if "QCD_Pt20_MuEnriched" in datasetsEmb.getAllDatasetNames(): allDatasets = ["QCD_Pt20_MuEnriched"] + ewkDatasets def ewkSum(table): table.insertColumn( 1, counter.sumColumn( "EWKMCsum", [table.getColumn(name=name) for name in ewkDatasets])) if allDatasets != None: table.insertColumn( 2, counter.sumColumn( "MCSum", [table.getColumn(name=name) for name in allDatasets])) ewkSum(mainTable) cellFormat = counter.TableFormatText( counter.CellFormatTeX(valueFormat='%.3f')) #print mainTableChi2.format(cellFormat) print mainTable.format(cellFormat) tauTable = eventCounter.getSubCounterTable( "TauIDPassedEvt::tauID_HPSTight") ewkSum(tauTable) print tauTable.format(cellFormat) # Efficiencies mainTable.keepOnlyRows([ "All events", "Trigger and HLT_MET cut", "taus == 1", # "trigger scale factor", "electron veto", "muon veto", "MET", "njets", "btagging", "btagging scale factor", "JetsForEffs", "METForEffs", "BTagging", "DeltaPhi < 160", "DeltaPhi < 130" ]) tauTable.keepOnlyRows([ "AllTauCandidates", "DecayModeFinding", "TauJetPt", "TauJetEta", "TauLdgTrackExists", "TauLdgTrackPtCut", "TauECALFiducialCutsCracksAndGap", "TauAgainstElectronCut", "TauAgainstMuonCut", #"EMFractionCut", "HPS", "TauOneProngCut", "TauRtauCut", ]) effFormat = counter.TableFormatText( counter.CellFormatTeX(valueFormat='%.4f')) #effFormat = counter.TableFormatConTeXtTABLE(counter.CellFormatTeX(valueFormat='%.4f')) for name, table in [("Main", mainTable), ("Tau ID", tauTable)]: effTable = counter.CounterTable() col = table.getColumn(name="Data") effTable.appendColumn(col) effTable.appendColumn( counter.efficiencyColumn(col.getName() + " eff", col)) col = table.getColumn(name="EWKMCsum") effTable.appendColumn(col) effTable.appendColumn( counter.efficiencyColumn(col.getName() + " eff", col)) print "%s counter efficiencies" % name print effTable.format(effFormat) if isCorrected: return print "Trigger uncertainties" bins = [40, 50, 60, 80] tauPtPrototype = ROOT.TH1F("tauPtTrigger", "Tau pt", len(bins) - 1, array.array("d", bins)) runs = [ "(160431 <= run && run <= 167913)", "(170722 <= run && run <= 173198)", "(173236 <= run && run <= 173692)", #"(160431 <= run && run <= 173692)", ] for name, td in [("BTagging", tdCountBTagging), ("DeltaPhi160", tdCountDeltaPhi160), ("DeltaPhi130", tdCountDeltaPhi130), ("DeltaPhi90", tdCountDeltaPhi90)]: t = td.clone(varexp="tau_p4.Pt() >>tauPtTrigger") NallSum = 0 NSum = 0 absUncSquareSum = 0 for runRegion in runs: #neventsPlot = createPlot(dataset.treeDrawToNumEntries(t.clone(weight="weightTrigger"))) #uncertaintyPlot = createPlot(dataset.treeDrawToNumEntries(t.clone(weight="weightTriggerAbsUnc*weightTriggerAbsUnc/(weightTrigger*weightTrigger)"))) tmp = t.clone(selection=t.selection + "&&" + runRegion) (th1all, gr) = datasetsEmb.getHistogram("Data", tmp.clone(weight="")) # Nall (th1, gr) = datasetsEmb.getHistogram( "Data", tmp.clone(weight="weightTrigger")) # Nevents (th12, gr) = datasetsEmb.getHistogram( "Data", tmp.clone(weight="weightTriggerAbsUnc")) # uncertainty Nall = th1all.Integral(0, th1all.GetNbinsX() + 1) N = th1.Integral(0, th1.GetNbinsX() + 1) #absSum2 = th12.Integral(0, th12.GetNbinsX()+1) #absUnc = math.sqrt(absSum2) #absUnc = th12.Integral(0, 2) NallSum += Nall NSum += N absUnc = tauEmbedding.squareSum(th12) absUncSquareSum += absUnc absUnc = math.sqrt(absUnc) relUnc = 0 if N > 0: relUnc = absUnc / N print "%-15s for runs %s Nall = %.2f, N = %.2f, absolute uncertainty %.2f, relative uncertainty %.4f" % ( name, runRegion, Nall, N, absUnc, relUnc) absUnc = math.sqrt(absUncSquareSum) relUnc = absUnc / NSum print "%-15s Nall = %.2f, N = %.2f, absolute uncertainty %.2f, relative uncertainty %.4f" % ( name, NallSum, NSum, absUnc, relUnc) print
def doCounters(datasetsEmb, datasetsSig, datasetName): lumi = datasetsEmb.getLuminosity() # Counters eventCounterEmb = tauEmbedding.EventCounterMany(datasetsEmb) eventCounterSig = counter.EventCounter(datasetsSig) def isNotThis(name): return name != datasetName eventCounterEmb.removeColumns( filter(isNotThis, datasetsEmb.getAllDatasetNames())) eventCounterSig.removeColumns( filter(isNotThis, datasetsSig.getAllDatasetNames())) eventCounterSig.normalizeMCToLuminosity(lumi) tdCount = dataset.TreeDraw("dummy", weight=tauEmbedding.signalNtuple.weightBTagging) tdCountMET = tdCount.clone(weight=tauEmbedding.signalNtuple.weight, selection=tauEmbedding.signalNtuple.metCut) tdCountBTagging = tdCount.clone( selection=And(tauEmbedding.signalNtuple.metCut, tauEmbedding.signalNtuple.bTaggingCut)) tdCountDeltaPhi160 = tdCount.clone(selection=And( tauEmbedding.signalNtuple.metCut, tauEmbedding.signalNtuple. bTaggingCut, tauEmbedding.signalNtuple.deltaPhi160Cut)) tdCountDeltaPhi130 = tdCount.clone(selection=And( tauEmbedding.signalNtuple.metCut, tauEmbedding.signalNtuple. bTaggingCut, tauEmbedding.signalNtuple.deltaPhi130Cut)) def addRow(name, td): tdEmb = td.clone(tree=analysisEmb + "/tree") tdSig = td.clone(tree=analysisSig + "/tree") eventCounterEmb.mainCounterAppendRow(name, tdEmb) eventCounterSig.getMainCounter().appendRow(name, tdSig) addRow("JetsForEffs", tdCount.clone(weight=tauEmbedding.signalNtuple.weight)) addRow("METForEffs", tdCountMET) addRow("BTagging (SF)", tdCountBTagging) addRow("DeltaPhi < 160", tdCountDeltaPhi160) addRow("BTagging (SF) again", tdCountBTagging) addRow("DeltaPhi < 130", tdCountDeltaPhi130) table = counter.CounterTable() col = eventCounterEmb.getMainCounterTable().getColumn(name=datasetName) table.appendColumn(counter.efficiencyColumn("Embedded eff", col)) col = eventCounterSig.getMainCounterTable().getColumn(name=datasetName) table.appendColumn(counter.efficiencyColumn("Normal eff", col)) table.keepOnlyRows([ "btagging", "METForEffs", "BTagging (SF)", "DeltaPhi < 160", "DeltaPhi < 130" ]) row = table.getRow(name="btagging") table.removeRow(name="btagging") table.insertRow(1, row) table.renameRows({ "METForEffs": "MET > 50", "btagging": "b tagging", "BTagging (SF)": "b tagging with SF (w.r.t MET)", "DeltaPhi < 130": "DeltaPhi < 130 (w.r.t. btagSF)" }) effFormat = counter.TableFormatText( counter.CellFormatTeX(valueFormat='%.4f', withPrecision=2)) # print table.format(effFormat) fname = "counters_selections_%s.txt" % datasetName f = open(fname, "w") f.write(table.format(effFormat)) f.close() print "Printed selection counters to", fname
def doTauCounters(datasetsEmb, datasetsSig, datasetName): lumi = datasetsEmb.getLuminosity() treeDraw = dataset.TreeDraw( "dummy", weight=tauEmbedding.tauNtuple.weight[tauEmbedding.era]) eventCounterEmb = tauEmbedding.EventCounterMany(datasetsEmb) eventCounterSig = counter.EventCounter(datasetsSig) def isNotThis(name): return name != datasetName eventCounterEmb.removeColumns( filter(isNotThis, datasetsEmb.getAllDatasetNames())) eventCounterSig.removeColumns( filter(isNotThis, datasetsSig.getAllDatasetNames())) eventCounterSig.normalizeMCToLuminosity(lumi) effFormat = counter.TableFormatLaTeX( counter.CellFormatTeX(valueFormat="%.4f", withPrecision=2)) tdEmb = treeDraw.clone(tree=tauAnalysisEmb + "/tree") tdSig = treeDraw.clone(tree=tauAnalysisSig + "/tree") selectionsCumulative = [] tauSelectionsCumulative = [] rowNames = [] def sel(name, selection): selectionsCumulative.append(selection) sel = selectionsCumulative[:] if len(tauSelectionsCumulative) > 0: sel += ["Sum$(%s) >= 1" % "&&".join(tauSelectionsCumulative)] sel = "&&".join(sel) eventCounterEmb.mainCounterAppendRow(name, tdEmb.clone(selection=sel)) eventCounterSig.getMainCounter().appendRow(name, tdSig.clone(selection=sel)) rowNames.append(name) def tauSel(name, selection): tauSelectionsCumulative.append(selection) sel = selectionsCumulative[:] if len(tauSelectionsCumulative) > 0: sel += ["Sum$(%s) >= 1" % "&&".join(tauSelectionsCumulative)] sel = "&&".join(sel) eventCounterEmb.mainCounterAppendRow(name, tdEmb.clone(selection=sel)) eventCounterSig.getMainCounter().appendRow(name, tdSig.clone(selection=sel)) rowNames.append(name) sel(">= 1 tau candidate", "Length$(taus_p4) >= 1") tauSel("Decay mode finding", tauEmbedding.tauNtuple.decayModeFinding) tauSel("pT > 15", "taus_p4.Pt() > 15") tauSel("pT > 40", tauEmbedding.tauNtuple.tauPtCut) tauSel("eta < 2.1", tauEmbedding.tauNtuple.tauEtaCut) tauSel("leading track pT > 20", tauEmbedding.tauNtuple.tauLeadPt) tauSel("ECAL fiducial", tauEmbedding.tauNtuple.ecalFiducial) tauSel("againstElectron", tauEmbedding.tauNtuple.electronRejection) tauSel("againstMuon", tauEmbedding.tauNtuple.muonRejection) tauSel("isolation", tauEmbedding.tauNtuple.tightIsolation) tauSel("oneProng", tauEmbedding.tauNtuple.oneProng) tauSel("Rtau", tauEmbedding.tauNtuple.rtau) sel("MET", tauEmbedding.tauNtuple.metSelection) table = counter.CounterTable() col = eventCounterEmb.getMainCounterTable().getColumn(name=datasetName) table.appendColumn(counter.efficiencyColumn("Embedded eff", col)) col = eventCounterSig.getMainCounterTable().getColumn(name=datasetName) table.appendColumn(counter.efficiencyColumn("Normal eff", col)) embeddingMuonIsolationEff = table.getCount( rowName="tauEmbeddingMuonsCount", colName="Embedded eff") embeddingTauIsolationEff = table.getCount(rowName="isolation", colName="Embedded eff") embeddingTotalIsolationEff = embeddingMuonIsolationEff.clone() embeddingTotalIsolationEff.multiply(embeddingTauIsolationEff) # Remove unnecessary rows del rowNames[0] table.keepOnlyRows(rowNames) rowIndex = table.getRowNames().index("isolation") table.insertRow( rowIndex, counter.CounterRow("Mu isolation (emb)", ["Embedded eff", "Normal eff"], [embeddingMuonIsolationEff, None])) table.insertRow( rowIndex + 1, counter.CounterRow("Tau isolation (emb)", ["Embedded eff", "Normal eff"], [embeddingTauIsolationEff, None])) table.setCount2(embeddingTotalIsolationEff, rowName="isolation", colName="Embedded eff") table.setCount2(None, rowName="pT > 15", colName="Normal eff") #print table.format(effFormat) fname = "counters_tau_" + datasetName + ".txt" f = open(fname, "w") f.write(table.format(effFormat)) f.write("\n") f.close() print "Printed tau counters to", fname