示例#1
0
class FlightPath(FlightPlan):

    flightPlan = None
    aircraftICAOcode = ''

    def __init__(self,
                 route,
                 aircraftICAOcode='A320',
                 RequestedFlightLevel=330.0,
                 cruiseMach=0.8,
                 takeOffMassKilograms=62000.0):

        self.className = self.__class__.__name__
        ''' init mother class '''
        FlightPlan.__init__(self, route)
        ''' first bad and incomplete flight length '''
        ''' missing last turn and glide slope '''
        self.flightLengthMeters = self.computeLengthMeters()

        self.aircraftICAOcode = aircraftICAOcode

        self.aircraft = None
        self.getAircraft()
        assert isinstance(self.aircraft,
                          BadaAircraft) and not (self.aircraft is None)
        self.aircraft.setAircraftMassKilograms(takeOffMassKilograms)

        assert RequestedFlightLevel >= 15.0 and RequestedFlightLevel <= 450.0
        self.aircraft.setTargetCruiseFlightLevel(
            RequestedFlightLevel=RequestedFlightLevel,
            departureAirportAltitudeMSLmeters=self.getDepartureAirport(
            ).getFieldElevationAboveSeaLevelMeters())
        self.aircraft.setTargetCruiseMach(cruiseMachNumber=cruiseMach)

        self.arrivalAirport = self.getArrivalAirport()
        if (self.arrivalAirport is None):
            print(self.className +
                  ': there is no arrival airport => flight is out-bound !!!')
        #assert isinstance(self.arrivalAirport, Airport) and not(self.arrivalAirport is None)

        self.departureAirport = self.getDepartureAirport()
        assert isinstance(self.departureAirport,
                          Airport) and not (self.departureAirport is None)

    def getAircraft(self):

        print(self.className +
              ': ================ get aircraft =================')
        atmosphere = Atmosphere()
        earth = Earth()
        acBd = BadaAircraftDatabase()
        assert acBd.read()

        if (acBd.aircraftExists(self.aircraftICAOcode)
                and acBd.aircraftPerformanceFileExists(self.aircraftICAOcode)):

            print(self.className + ': performance file= {0}'.format(
                acBd.getAircraftPerformanceFile(self.aircraftICAOcode)))
            self.aircraft = BadaAircraft(
                ICAOcode=self.aircraftICAOcode,
                aircraftFullName=acBd.getAircraftFullName(
                    self.aircraftICAOcode),
                badaPerformanceFilePath=acBd.getAircraftPerformanceFile(
                    self.aircraftICAOcode),
                atmosphere=atmosphere,
                earth=earth)
            self.aircraft.dump()
        else:
            raise ValueError(self.className + ': aircraft not found= ' +
                             self.aircraftICAOcode)

    def printPassedWayPoint(self, finalWayPoint):

        minutes, seconds = divmod(finalWayPoint.getElapsedTimeSeconds(), 60)
        distanceFlownNautics = self.finalRoute.getLengthMeters(
        ) * Meter2NauticalMiles
        strMsg = ': passing way-point: {0} - alt= {1:.2f} meters - alt= {2:.2f} feet - already flown distance= {3:.2f} nautics'.format(
            finalWayPoint.getName(),
            finalWayPoint.getAltitudeMeanSeaLevelMeters(),
            finalWayPoint.getAltitudeMeanSeaLevelMeters() * Meter2Feet,
            distanceFlownNautics)
        elapsedTimeSeconds = finalWayPoint.getElapsedTimeSeconds()
        if elapsedTimeSeconds >= 60.0 and elapsedTimeSeconds < 3600.0:
            minutes, seconds = divmod(elapsedTimeSeconds, 60)

            strMsg += ' - real time = {0:.2f} seconds - {1:.2f} minutes {2:.2f} seconds'.format(
                elapsedTimeSeconds, minutes, seconds)
        else:
            minutes, seconds = divmod(elapsedTimeSeconds, 60)
            hours, minutes = divmod(minutes, 60)
            strMsg += ' - real time = {0:.2f} seconds - {1:.2f} hours {2:.2f} minutes {3:.2f} seconds'.format(
                elapsedTimeSeconds, hours, minutes, seconds)

        print(self.className + strMsg)

    def turnAndFly(self, tailWayPoint, headWayPoint, initialHeadingDegrees,
                   headWayPointIndex):
        ''' 
        execute a turn to align true heading and then fly a great circle 
        '''
        print(
            ' ================== one Turn Leg for each fix in the list =============== '
        )
        turnLeg = TurnLeg(initialWayPoint=tailWayPoint,
                          finalWayPoint=headWayPoint,
                          initialHeadingDegrees=initialHeadingDegrees,
                          aircraft=self.aircraft,
                          reverse=False)

        distanceToLastFixMeters = self.computeDistanceToLastFixMeters(
            currentPosition=tailWayPoint, fixListIndex=headWayPointIndex)
        print(self.className +
              ': distance to last fix= {0:.2f} nautics'.format(
                  distanceToLastFixMeters * Meter2NauticalMiles))
        distanceStillToFlyMeters = self.flightLengthMeters - self.finalRoute.getLengthMeters(
        )
        print(self.className + ': still to fly= {0:.2f} nautics'.format(
            distanceStillToFlyMeters * Meter2NauticalMiles))

        endOfSimulation = turnLeg.buildTurnLeg(
            deltaTimeSeconds=self.deltaTimeSeconds,
            elapsedTimeSeconds=tailWayPoint.getElapsedTimeSeconds(),
            distanceStillToFlyMeters=distanceStillToFlyMeters,
            distanceToLastFixMeters=distanceToLastFixMeters)
        self.finalRoute.addGraph(turnLeg)

        if (endOfSimulation == False):
            print(
                ' ==================== end of turn leg  ==================== ')

            endOfTurnLegWayPoint = self.finalRoute.getLastVertex().getWeight()
            lastLeg = self.finalRoute.getLastEdge()
            print(self.className +
                  ': end of turn orientation= {0:.2f} degrees'.format(
                      lastLeg.getBearingTailHeadDegrees()))
            '''==================== check if anticipated turn or fly by is applicable '''
            anticipatedTurnWayPoint = None
            if (self.flightListIndex + 2) < len(self.fixList):
                ''' still another fix in the list '''
                firstAngleDegrees = endOfTurnLegWayPoint.getBearingDegreesTo(
                    headWayPoint)
                secondAngleDegrees = headWayPoint.getBearingDegreesTo(
                    self.wayPointsDict[self.fixList[self.flightListIndex + 2]])
                firstAngleRadians = math.radians(firstAngleDegrees)
                secondAngleRadians = math.radians(secondAngleDegrees)

                angleDifferenceDegrees = math.degrees(
                    math.atan2(
                        math.sin(secondAngleRadians - firstAngleRadians),
                        math.cos(secondAngleRadians - firstAngleRadians)))
                print(self.className + ': difference= {0:.2f} degrees'.format(
                    angleDifferenceDegrees))

                tasMetersPerSecond = self.aircraft.getCurrentTrueAirSpeedMetersSecond(
                )
                radiusOfTurnMeters = (tasMetersPerSecond * tasMetersPerSecond
                                      ) / (9.81 * math.tan(math.radians(15.0)))

                anticipatedTurnStartMeters = radiusOfTurnMeters * math.tan(
                    math.radians((180.0 - abs(angleDifferenceDegrees)) / 2.0))
                print(self.className +
                      ': anticipated turn start from end point= {0:.2f} meters'
                      .format(anticipatedTurnStartMeters))

                if ((endOfTurnLegWayPoint.getDistanceMetersTo(headWayPoint) >
                     (1.1 * anticipatedTurnStartMeters)
                     and abs(angleDifferenceDegrees) > 30.)):
                    print(self.className +
                          ': Envisage anticipated Fly By turn !!!')
                    bearingDegrees = math.fmod(firstAngleDegrees + 180.0,
                                               360.0)
                    anticipatedTurnWayPoint = headWayPoint.getWayPointAtDistanceBearing(
                        Name='Anticipated-Turn-' + headWayPoint.getName(),
                        DistanceMeters=anticipatedTurnStartMeters,
                        BearingDegrees=bearingDegrees)
                    headWayPoint = anticipatedTurnWayPoint

            print(
                ' ==================== great circle ======================== ')
            greatCircle = GreatCircleRoute(
                initialWayPoint=endOfTurnLegWayPoint,
                finalWayPoint=headWayPoint,
                aircraft=self.aircraft)

            distanceToLastFixMeters = self.computeDistanceToLastFixMeters(
                currentPosition=endOfTurnLegWayPoint,
                fixListIndex=headWayPointIndex)
            print(self.className +
                  ': distance to last fix= {0} nautics'.format(
                      distanceToLastFixMeters * Meter2NauticalMiles))

            distanceStillToFlyMeters = self.flightLengthMeters - self.finalRoute.getLengthMeters(
            )
            print(self.className + ': still to fly= {0} nautics'.format(
                distanceStillToFlyMeters * Meter2NauticalMiles))

            endOfSimulation = greatCircle.computeGreatCircle(
                deltaTimeSeconds=self.deltaTimeSeconds,
                elapsedTimeSeconds=endOfTurnLegWayPoint.getElapsedTimeSeconds(
                ),
                distanceStillToFlyMeters=distanceStillToFlyMeters,
                distanceToLastFixMeters=distanceToLastFixMeters)
            ''' update final route '''
            self.finalRoute.addGraph(greatCircle)

            print(
                ' ================== end of great circle ================== ')

            finalWayPoint = self.finalRoute.getLastVertex().getWeight()
            #print self.className + ': current end way point= ' + str(finalWayPoint)

            lastLeg = self.finalRoute.getLastEdge()
            finalHeadingDegrees = lastLeg.getBearingTailHeadDegrees()
            #print self.className + ': last leg orientation= {0:.2f} degrees'.format(finalHeadingDegrees)

            distanceStillToFlyMeters = self.flightLengthMeters - self.finalRoute.getLengthMeters(
            )
            print(
                self.className +
                ': still to fly= {0:.2f} meters - still to fly= {1:.2f} nautics'
                .format(distanceStillToFlyMeters, distanceStillToFlyMeters *
                        Meter2NauticalMiles))
            ''' print the way point that has been passed right now '''
            self.printPassedWayPoint(finalWayPoint)
        ''' return to caller '''
        return endOfSimulation, finalHeadingDegrees, finalWayPoint.getElapsedTimeSeconds(
        ), anticipatedTurnWayPoint

    def loopThroughFixList(self, initialHeadingDegrees, elapsedTimeSeconds):

        anticipatedTurnWayPoint = None
        ''' start loop over the fix list '''
        ''' assumption: fix list does not contain departure and arrival airports '''
        self.flightListIndex = 0
        ''' loop over the fix list '''
        endOfSimulation = False
        while (endOfSimulation
               == False) and (self.flightListIndex < len(self.fixList)):
            #print  self.className + ': initial heading degrees= ' + str(initialHeadingDegrees) + ' degrees'
            ''' get the next fix '''
            if (anticipatedTurnWayPoint is None):
                fix = self.fixList[self.flightListIndex]
                ''' tail way point to reach '''
                tailWayPoint = self.wayPointsDict[fix]
            else:
                ''' we do not use the next fix but the anticipated turn way point '''
                tailWayPoint = anticipatedTurnWayPoint

            tailWayPoint.setElapsedTimeSeconds(elapsedTimeSeconds)

            if (self.flightListIndex + 1) < len(self.fixList):
                ''' next way point is still in the fix list => not yet the arrival airport '''
                headWayPoint = self.wayPointsDict[self.fixList[
                    self.flightListIndex + 1]]
                print(headWayPoint)
                ''' turn and fly '''
                endOfSimulation, initialHeadingDegrees, elapsedTimeSeconds, anticipatedTurnWayPoint = self.turnAndFly(
                    tailWayPoint=tailWayPoint,
                    headWayPoint=headWayPoint,
                    initialHeadingDegrees=initialHeadingDegrees,
                    headWayPointIndex=self.flightListIndex)
            ''' prepare for next loop '''
            self.flightListIndex += 1
        ''' return final heading of the last great circle '''
        return endOfSimulation, initialHeadingDegrees

    def buildDeparturePhase(self):
        ''' 
        this function manages the departure phases with a ground run and a climb ramp 
        '''

        print(self.className +
              ' ============== build the departure ground run =========== ')
        self.finalRoute = GroundRunLeg(runway=self.departureRunway,
                                       aircraft=self.aircraft,
                                       airport=self.departureAirport)

        distanceToLastFixMeters = self.computeDistanceToLastFixMeters(
            currentPosition=self.departureAirport, fixListIndex=0)
        distanceStillToFlyMeters = self.flightLengthMeters - self.finalRoute.getLengthMeters(
        )

        elapsedTimeSeconds = 0.0
        self.finalRoute.buildDepartureGroundRun(
            deltaTimeSeconds=self.deltaTimeSeconds,
            elapsedTimeSeconds=elapsedTimeSeconds,
            distanceStillToFlyMeters=distanceStillToFlyMeters,
            distanceToLastFixMeters=distanceToLastFixMeters)
        distanceStillToFlyMeters = self.flightLengthMeters - self.finalRoute.getLengthMeters(
        )

        #print '==================== end of ground run ==================== '
        initialWayPoint = self.finalRoute.getLastVertex().getWeight()
        distanceToFirstFixNautics = initialWayPoint.getDistanceMetersTo(
            self.getFirstWayPoint()) * Meter2NauticalMiles
        #print '==================== Initial Climb Ramp ==================== '

        climbRamp = ClimbRamp(initialWayPoint=initialWayPoint,
                              runway=self.departureRunway,
                              aircraft=self.aircraft,
                              departureAirport=self.departureAirport)
        ''' climb ramp of 5.0 nautics is not possible if first fix placed in between '''
        climbRampLengthNautics = min(distanceToFirstFixNautics / 2.0, 5.0)
        climbRamp.buildClimbRamp(
            deltaTimeSeconds=self.deltaTimeSeconds,
            elapsedTimeSeconds=initialWayPoint.getElapsedTimeSeconds(),
            distanceStillToFlyMeters=distanceStillToFlyMeters,
            distanceToLastFixMeters=distanceToLastFixMeters,
            climbRampLengthNautics=climbRampLengthNautics)
        self.finalRoute.addGraph(climbRamp)

        #print '============= initial condition for the route ================='

        initialWayPoint = self.finalRoute.getLastVertex().getWeight()
        lastLeg = self.finalRoute.getLastEdge()
        initialHeadingDegrees = lastLeg.getBearingTailHeadDegrees()
        print(self.className +
              ': last leg orientation= {0:.2f} degrees'.format(
                  initialHeadingDegrees))

        #'''============= add way point in the fix list =============== '''
        self.insert(position='begin', wayPoint=initialWayPoint)
        #print self.className + ': fix list= {0}'.format(self.fixList)

        return initialHeadingDegrees, initialWayPoint

    def buildSimulatedArrivalPhase(self):

        print(
            self.className +
            '=========== add final turn, descent and ground run ==================='
        )
        arrivalGroundRun = GroundRunLeg(runway=self.arrivalRunway,
                                        aircraft=self.aircraft,
                                        airport=self.arrivalAirport)
        self.touchDownWayPoint = arrivalGroundRun.computeTouchDownWayPoint()
        # add touch down to constraint list
        self.constraintsList.append(
            ArrivalRunWayTouchDownConstraint(self.touchDownWayPoint))

        print(self.touchDownWayPoint)
        ''' distance from last fix to touch down '''
        distanceToLastFixNautics = self.touchDownWayPoint.getDistanceMetersTo(
            self.getLastWayPoint()) * Meter2NauticalMiles

        print(
            self.className +
            '===================== final 3 degrees descending glide slope ================'
        )
        descentGlideSlope = DescentGlideSlope(
            runway=self.arrivalRunway,
            aircraft=self.aircraft,
            arrivalAirport=self.arrivalAirport,
            descentGlideSlopeDegrees=3.0)
        ''' if there is a fix nearer to 5 nautics of the touch-down then limit size of simulated glide slope '''
        descentGlideSlopeSizeNautics = min(distanceToLastFixNautics / 2.0, 5.0)
        ''' build simulated glide slope '''
        descentGlideSlope.buildSimulatedGlideSlope(
            descentGlideSlopeSizeNautics)
        self.firstGlideSlopeWayPoint = descentGlideSlope.getVertex(
            v=0).getWeight()
        print(self.className + ': top of arrival glide slope= {0}'.format(
            self.firstGlideSlopeWayPoint))

        print(
            self.className +
            ' ================= need a turn leg to find the junction point the last way-point in the fix list to the top of the final glide slope'
        )
        '''
        initial heading is the orientation of the run-way
        '''
        lastFixListWayPoint = self.wayPointsDict[self.fixList[-1]]
        initialHeadingDegrees = self.arrivalRunway.getTrueHeadingDegrees()

        print("=====> arrival runway - true heading degrees = {0}".format(
            initialHeadingDegrees))

        lastTurnLeg = TurnLeg(initialWayPoint=self.firstGlideSlopeWayPoint,
                              finalWayPoint=lastFixListWayPoint,
                              initialHeadingDegrees=initialHeadingDegrees,
                              aircraft=self.aircraft,
                              reverse=True)
        lastTurnLeg.buildNewSimulatedArrivalTurnLeg(
            deltaTimeSeconds=self.deltaTimeSeconds,
            elapsedTimeSeconds=0.0,
            distanceStillToFlyMeters=0.0,
            simulatedAltitudeSeaLevelMeters=self.firstGlideSlopeWayPoint.
            getAltitudeMeanSeaLevelMeters(),
            flightPathAngleDegrees=3.0,
            bankAngleDegrees=5.0)
        descentGlideSlope.addGraph(lastTurnLeg)
        #print self.className + ': compute arrival phase length= {0:.2f} meters'.format(descentGlideSlope.getLengthMeters())
        #descentGlideSlope.createXlsxOutputFile()
        #descentGlideSlope.createKmlOutputFile()
        ''' prepare next step '''
        beginOfLastTurnLeg = lastTurnLeg.getVertex(v=0).getWeight()
        print(self.className +
              ': begin of last turn= {0}'.format(beginOfLastTurnLeg))
        ''' add to constraint list '''
        self.constraintsList.append(
            TargetApproachConstraint(beginOfLastTurnLeg))
        ''' add the three last way-points in the fix list '''
        self.insert(position='end', wayPoint=beginOfLastTurnLeg)
        ''' update the length of the flight path '''
        self.distanceFromApproachToTouchDownMeters = descentGlideSlope.getLengthMeters(
        )
        self.flightLengthMeters = self.computeLengthMeters(
        ) + descentGlideSlope.getLengthMeters()

        print(self.className +
              ': updated flight path length= {0:.2f} nautics'.format(
                  self.flightLengthMeters * Meter2NauticalMiles))
        ''' target approach fix is equal to the begin of the SIMULATED last turn leg '''
        self.aircraft.setTargetApproachWayPoint(beginOfLastTurnLeg)
        self.aircraft.setArrivalRunwayTouchDownWayPoint(self.touchDownWayPoint)
        print(self.className + ': fix list= {0}'.format(self.fixList))

    def buildArrivalPhase(self, initialHeadingDegrees):

        print(
            self.className +
            ': initial heading= {0:.2f} degrees'.format(initialHeadingDegrees))

        print(self.className +
              '==================== add last turn ==================== ')
        if self.isDomestic() or self.isInBound():
            endOfLastGreatCircleWayPoint = self.finalRoute.getLastVertex(
            ).getWeight()

            finalHeadingDegrees = self.arrivalRunway.getTrueHeadingDegrees()
            finalHeadingDegrees = math.fmod(finalHeadingDegrees + 180.0, 360.0)
            print(self.className +
                  ': runway final heading= {0:.2f} degrees'.format(
                      finalHeadingDegrees))

            turnLeg = TurnLeg(
                initialWayPoint=endOfLastGreatCircleWayPoint,
                #finalWayPoint    = self.firstGlideSlopeWayPoint,
                finalWayPoint=self.touchDownWayPoint,
                initialHeadingDegrees=initialHeadingDegrees,
                aircraft=self.aircraft,
                reverse=False)

            distanceStillToFlyMeters = self.flightLengthMeters - self.finalRoute.getLengthMeters(
            )
            distanceToLastFixMeters = self.computeDistanceToLastFixMeters(
                currentPosition=endOfLastGreatCircleWayPoint,
                fixListIndex=self.flightListIndex)
            distanceToLastFixMeters = distanceStillToFlyMeters
            ''' for the last turn => final heading towards the runway orientation '''
            deltaTimeSeconds = 0.1
            turnLeg.buildTurnLeg(
                deltaTimeSeconds=deltaTimeSeconds,
                elapsedTimeSeconds=endOfLastGreatCircleWayPoint.
                getElapsedTimeSeconds(),
                distanceStillToFlyMeters=distanceStillToFlyMeters,
                distanceToLastFixMeters=distanceToLastFixMeters,
                finalHeadingDegrees=finalHeadingDegrees,
                lastTurn=True,
                bankAngleDegrees=5.0,
                arrivalRunway=self.arrivalRunway)
            self.finalRoute.addGraph(turnLeg)

            endOfTurnLegWayPoint = self.finalRoute.getLastVertex().getWeight()
            ''' ============= use touch-down way-point to compute distance to fly ============='''
            distanceStillToFlyMeters = endOfTurnLegWayPoint.getDistanceMetersTo(
                self.touchDownWayPoint)
            print(self.className +
                  ': distance still to fly= {0:.2f} nautics'.format(
                      distanceStillToFlyMeters * Meter2NauticalMiles))

            #print '==================== add descent slope ================= '
            descentGlideSlope = DescentGlideSlope(
                runway=self.arrivalRunway,
                aircraft=self.aircraft,
                arrivalAirport=self.arrivalAirport,
                descentGlideSlopeDegrees=3.0)

            flownDistanceMeters = self.finalRoute.getLengthMeters()
            distanceStillToFlyMeters = self.flightLengthMeters - self.finalRoute.getLengthMeters(
            )
            distanceToLastFixMeters = self.computeDistanceToLastFixMeters(
                currentPosition=endOfTurnLegWayPoint,
                fixListIndex=self.flightListIndex)
            distanceToLastFixMeters = distanceStillToFlyMeters

            descentGlideSlope.buildGlideSlope(
                deltaTimeSeconds=self.deltaTimeSeconds,
                elapsedTimeSeconds=endOfTurnLegWayPoint.getElapsedTimeSeconds(
                ),
                initialWayPoint=endOfTurnLegWayPoint,
                flownDistanceMeters=flownDistanceMeters,
                distanceStillToFlyMeters=distanceStillToFlyMeters,
                distanceToLastFixMeters=distanceToLastFixMeters)
            self.finalRoute.addGraph(descentGlideSlope)
            endOfDescentGlideSlope = self.finalRoute.getLastVertex().getWeight(
            )

            #print '================= add arrival ground run ================'
            arrivalGroundRun = GroundRunLeg(runway=self.arrivalRunway,
                                            aircraft=self.aircraft,
                                            airport=self.arrivalAirport)
            arrivalGroundRun.buildArrivalGroundRun(
                deltaTimeSeconds=self.deltaTimeSeconds,
                elapsedTimeSeconds=endOfDescentGlideSlope.
                getElapsedTimeSeconds(),
                initialWayPoint=endOfDescentGlideSlope)
            self.finalRoute.addGraph(arrivalGroundRun)

    def computeFlight(self, deltaTimeSeconds):
        ''' 
        main entry to compute a whole flight 
        '''
        self.deltaTimeSeconds = deltaTimeSeconds

        assert not (self.aircraft is None)
        assert not (self.departureRunway is None)
        assert not (self.departureAirport is None)

        if self.isDomestic() or self.isOutBound():
            initialHeadingDegrees, initialWayPoint = self.buildDeparturePhase()

        if self.isDomestic() or self.isInBound():
            assert not (self.arrivalAirport is None)
            self.buildSimulatedArrivalPhase()

        #print '==================== Loop over the fix list ==================== '

        endOfSimulation, initialHeadingDegrees = self.loopThroughFixList(
            initialHeadingDegrees=initialHeadingDegrees,
            elapsedTimeSeconds=initialWayPoint.getElapsedTimeSeconds())

        if (endOfSimulation == False):
            #print '=========== build arrival phase =============='
            self.buildArrivalPhase(initialHeadingDegrees)

        print(self.className + ' ========== delta mass status ==============')
        print(self.className +
              ': initial mass= {0:.2f} kilograms = {1:.2f} pounds'.format(
                  self.aircraft.getAircraftInitialMassKilograms(),
                  self.aircraft.getAircraftInitialMassKilograms() *
                  Kilogram2Pounds))
        print(self.className +
              ': final mass= {0:.2f} kilograms = {1:.2f} pounds'.format(
                  self.aircraft.getAircraftCurrentMassKilograms(),
                  self.aircraft.getAircraftCurrentMassKilograms() *
                  Kilogram2Pounds))
        print(self.className +
              ': diff mass= {0:.2f} kilograms = {1:.2f} pounds'.format(
                  self.aircraft.getAircraftInitialMassKilograms() -
                  self.aircraft.getAircraftCurrentMassKilograms(),
                  (self.aircraft.getAircraftInitialMassKilograms() -
                   self.aircraft.getAircraftCurrentMassKilograms()) *
                  Kilogram2Pounds))
        print(self.className + ' ========== delta mass status ==============')

    def createFlightOutputFiles(self):
        ''' build outputs '''
        self.finalRoute.createXlsxOutputFile()
        self.finalRoute.createKmlOutputFile()
        ''' add a prefix to the file path to identify the departure and arrival airport '''
        filePrefix = ''
        if not (self.departureAirport is None):
            filePrefix = self.departureAirport.getICAOcode()
            if not (self.arrivalAirport is None):
                filePrefix += '-' + self.arrivalAirport.getICAOcode()
        self.aircraft.createStateVectorOutputFile(filePrefix)
        print('{0} - final route length= {1:.2f} nautics'.format(
            self.className,
            self.finalRoute.getLengthMeters() * Meter2NauticalMiles))
示例#2
0
        aircraft.dump()
    assert not (aircraft is None)

    elapsedTimeSeconds = 0.0
    deltaTimeSeconds = 1.0

    aircraft.initStateVector(elapsedTimeSeconds=0.0,
                             trueAirSpeedMetersSecond=0.0,
                             altitudeMeanSeaLevelMeters=0.0)

    aircraft.setTargetCruiseFlightLevel(RequestedFlightLevel=310.0,
                                        departureAirportAltitudeMSLmeters=0.0)
    aircraft.setAircraftMassKilograms(aircraftMassKilograms=64000.0)
    aircraft.setTargetCruiseMach(cruiseMach=0.8)

    tas = aircraft.getCurrentTrueAirSpeedMetersSecond()
    previousAltitudeMSLmeters = 0.0
    t0 = time.clock()
    print('simulation start= {0} seconds'.format(t0))
    print('=========== simulation start ==================')
    endOfSimulation = False
    currentPosition = departureAirport

    arrivalGroundRun = GroundRunLeg(runway=arrivalRunway,
                                    aircraft=aircraft,
                                    airport=arrivalAirport)
    touchDownWayPoint = arrivalGroundRun.computeTouchDownWayPoint()
    print(touchDownWayPoint)

    print(
        '===================== final 3 degrees descending glide slope ================'
class FlightPath(FlightPlan):

    flightPlan = None
    aircraftICAOcode = ""

    def __init__(
        self, route, aircraftICAOcode="A320", RequestedFlightLevel=330.0, cruiseMach=0.8, takeOffMassKilograms=62000.0
    ):

        self.className = self.__class__.__name__
        FlightPlan.__init__(self, route)
        """ first bad and incomplete flight length """
        """ missing last turn and glide slope """
        self.flightLengthMeters = self.computeLengthMeters()

        self.aircraftICAOcode = aircraftICAOcode

        self.aircraft = None
        self.getAircraft()
        assert isinstance(self.aircraft, BadaAircraft) and not (self.aircraft is None)
        self.aircraft.setAircraftMassKilograms(takeOffMassKilograms)

        assert RequestedFlightLevel >= 15.0 and RequestedFlightLevel <= 450.0
        self.aircraft.setTargetCruiseFlightLevel(
            RequestedFlightLevel=RequestedFlightLevel,
            departureAirportAltitudeMSLmeters=self.getDepartureAirport().getFieldElevationAboveSeaLevelMeters(),
        )
        self.aircraft.setTargetCruiseMach(cruiseMachNumber=cruiseMach)

        self.arrivalAirport = self.getArrivalAirport()
        if self.arrivalAirport is None:
            print self.className + ": there is no arrival airport => flight is outbound !!!"
        # assert isinstance(self.arrivalAirport, Airport) and not(self.arrivalAirport is None)

        self.departureAirport = self.getDepartureAirport()
        assert isinstance(self.departureAirport, Airport) and not (self.departureAirport is None)

    def getAircraft(self):

        print self.className + ": ================ get aircraft ================="
        atmosphere = Atmosphere()
        earth = Earth()
        acBd = BadaAircraftDatabase()
        assert acBd.read()

        if acBd.aircraftExists(self.aircraftICAOcode) and acBd.aircraftPerformanceFileExists(self.aircraftICAOcode):

            print self.className + ": performance file= {0}".format(
                acBd.getAircraftPerformanceFile(self.aircraftICAOcode)
            )
            self.aircraft = BadaAircraft(
                ICAOcode=self.aircraftICAOcode,
                aircraftFullName=acBd.getAircraftFullName(self.aircraftICAOcode),
                badaPerformanceFilePath=acBd.getAircraftPerformanceFile(self.aircraftICAOcode),
                atmosphere=atmosphere,
                earth=earth,
            )
            self.aircraft.dump()
        else:
            raise ValueError(self.className + ": aircraft not found= " + self.aircraftICAOcode)

    def printPassedWayPoint(self, finalWayPoint):

        minutes, seconds = divmod(finalWayPoint.getElapsedTimeSeconds(), 60)
        distanceFlownNautics = self.finalRoute.getLengthMeters() * Meter2NauticalMiles
        strMsg = ": passing waypoint: {0} - alt= {1:.2f} meters - alt= {2:.2f} feet - distance= {3:.2f} nautics".format(
            finalWayPoint.getName(),
            finalWayPoint.getAltitudeMeanSeaLevelMeters(),
            finalWayPoint.getAltitudeMeanSeaLevelMeters() * Meter2Feet,
            distanceFlownNautics,
        )
        elapsedTimeSeconds = finalWayPoint.getElapsedTimeSeconds()
        if elapsedTimeSeconds >= 60.0 and elapsedTimeSeconds < 3600.0:
            minutes, seconds = divmod(elapsedTimeSeconds, 60)

            strMsg += " - real time = {0:.2f} seconds - {1:.2f} minutes {2:.2f} seconds".format(
                elapsedTimeSeconds, minutes, seconds
            )
        else:
            minutes, seconds = divmod(elapsedTimeSeconds, 60)
            hours, minutes = divmod(minutes, 60)
            strMsg += " - real time = {0:.2f} seconds - {1:.2f} hours {2:.2f} minutes {3:.2f} seconds".format(
                elapsedTimeSeconds, hours, minutes, seconds
            )

        print self.className + strMsg

    def turnAndFly(self, tailWayPoint, headWayPoint, initialHeadingDegrees, headWayPointIndex):
        """ 
        execute a turn to align true heading and then fly a great circle 
        """
        print " ================== one Turn Leg for each fix in the list =============== "
        turnLeg = TurnLeg(
            initialWayPoint=tailWayPoint,
            finalWayPoint=headWayPoint,
            initialHeadingDegrees=initialHeadingDegrees,
            aircraft=self.aircraft,
            reverse=False,
        )

        distanceToLastFixMeters = self.computeDistanceToLastFixMeters(
            currentPosition=tailWayPoint, fixListIndex=headWayPointIndex
        )
        print self.className + ": distance to last fix= {0} nautics".format(
            distanceToLastFixMeters * Meter2NauticalMiles
        )
        distanceStillToFlyMeters = self.flightLengthMeters - self.finalRoute.getLengthMeters()
        print self.className + ": still to fly= {0} nautics".format(distanceStillToFlyMeters * Meter2NauticalMiles)

        endOfSimulation = turnLeg.buildTurnLeg(
            deltaTimeSeconds=self.deltaTimeSeconds,
            elapsedTimeSeconds=tailWayPoint.getElapsedTimeSeconds(),
            distanceStillToFlyMeters=distanceStillToFlyMeters,
            distanceToLastFixMeters=distanceToLastFixMeters,
        )
        self.finalRoute.addGraph(turnLeg)

        if endOfSimulation == False:
            print " ==================== end of turn leg  ==================== "

            endOfTurnLegWayPoint = self.finalRoute.getLastVertex().getWeight()
            lastLeg = self.finalRoute.getLastEdge()
            print self.className + ": end of turn orientation= {0:.2f} degrees".format(
                lastLeg.getBearingTailHeadDegrees()
            )

            """==================== check if anticipated turn or fly by is applicable """
            anticipatedTurnWayPoint = None
            if (self.flightListIndex + 2) < len(self.fixList):
                """ still another fix in the list """
                firstAngleDegrees = endOfTurnLegWayPoint.getBearingDegreesTo(headWayPoint)
                secondAngleDegrees = headWayPoint.getBearingDegreesTo(
                    self.wayPointsDict[self.fixList[self.flightListIndex + 2]]
                )
                firstAngleRadians = math.radians(firstAngleDegrees)
                secondAngleRadians = math.radians(secondAngleDegrees)

                angleDifferenceDegrees = math.degrees(
                    math.atan2(
                        math.sin(secondAngleRadians - firstAngleRadians),
                        math.cos(secondAngleRadians - firstAngleRadians),
                    )
                )
                print self.className + ": difference= {0:.2f} degrees".format(angleDifferenceDegrees)

                tasMetersPerSecond = self.aircraft.getCurrentTrueAirSpeedMetersSecond()
                radiusOfTurnMeters = (tasMetersPerSecond * tasMetersPerSecond) / (9.81 * math.tan(math.radians(15.0)))

                anticipatedTurnStartMeters = radiusOfTurnMeters * math.tan(
                    math.radians((180.0 - abs(angleDifferenceDegrees)) / 2.0)
                )
                print self.className + ": anticipated turn start from end point= {0:.2f} meters".format(
                    anticipatedTurnStartMeters
                )

                if (
                    endOfTurnLegWayPoint.getDistanceMetersTo(headWayPoint) > (1.1 * anticipatedTurnStartMeters)
                    and abs(angleDifferenceDegrees) > 30.0
                ):
                    print self.className + ": Envisage anticipated Fly By turn !!!!!!!!!!!!!!!!!!!!!!!!!"
                    bearingDegrees = math.fmod(firstAngleDegrees + 180.0, 360.0)
                    anticipatedTurnWayPoint = headWayPoint.getWayPointAtDistanceBearing(
                        Name="Anticipated-Turn-" + headWayPoint.getName(),
                        DistanceMeters=anticipatedTurnStartMeters,
                        BearingDegrees=bearingDegrees,
                    )
                    headWayPoint = anticipatedTurnWayPoint

            print " ==================== great circle ======================== "
            greatCircle = GreatCircleRoute(
                initialWayPoint=endOfTurnLegWayPoint, finalWayPoint=headWayPoint, aircraft=self.aircraft
            )

            distanceToLastFixMeters = self.computeDistanceToLastFixMeters(
                currentPosition=endOfTurnLegWayPoint, fixListIndex=headWayPointIndex
            )
            print self.className + ": distance to last fix= {0} nautics".format(
                distanceToLastFixMeters * Meter2NauticalMiles
            )

            distanceStillToFlyMeters = self.flightLengthMeters - self.finalRoute.getLengthMeters()
            print self.className + ": still to fly= {0} nautics".format(distanceStillToFlyMeters * Meter2NauticalMiles)

            endOfSimulation = greatCircle.computeGreatCircle(
                deltaTimeSeconds=self.deltaTimeSeconds,
                elapsedTimeSeconds=endOfTurnLegWayPoint.getElapsedTimeSeconds(),
                distanceStillToFlyMeters=distanceStillToFlyMeters,
                distanceToLastFixMeters=distanceToLastFixMeters,
            )
            """ update final route """
            self.finalRoute.addGraph(greatCircle)

            print " ================== end of great circle ================== "

            finalWayPoint = self.finalRoute.getLastVertex().getWeight()
            # print self.className + ': current end way point= ' + str(finalWayPoint)

            lastLeg = self.finalRoute.getLastEdge()
            finalHeadingDegrees = lastLeg.getBearingTailHeadDegrees()
            # print self.className + ': last leg orientation= {0:.2f} degrees'.format(finalHeadingDegrees)

            distanceStillToFlyMeters = self.flightLengthMeters - self.finalRoute.getLengthMeters()
            print self.className + ": still to fly= {0:.2f} meters - still to fly= {1:.2f} nautics".format(
                distanceStillToFlyMeters, distanceStillToFlyMeters * Meter2NauticalMiles
            )
            """ print the way point that has been passed right now """
            self.printPassedWayPoint(finalWayPoint)
        """ return to caller """
        return endOfSimulation, finalHeadingDegrees, finalWayPoint.getElapsedTimeSeconds(), anticipatedTurnWayPoint

    def loopThroughFixList(self, initialHeadingDegrees, elapsedTimeSeconds):

        anticipatedTurnWayPoint = None
        """ start loop over the fix list """
        """ fix list does not contain departure and arrival airports """
        self.flightListIndex = 0
        """ loop over the fix list """
        endOfSimulation = False
        while (endOfSimulation == False) and (self.flightListIndex < len(self.fixList)):
            # print  self.className + ': initial heading degrees= ' + str(initialHeadingDegrees) + ' degrees'

            """ get the next fix """
            if anticipatedTurnWayPoint is None:
                fix = self.fixList[self.flightListIndex]
                """ tail way point to reach """
                tailWayPoint = self.wayPointsDict[fix]
            else:
                """ we do not use the next fix but the anticipated turn way point """
                tailWayPoint = anticipatedTurnWayPoint

            tailWayPoint.setElapsedTimeSeconds(elapsedTimeSeconds)

            if (self.flightListIndex + 1) < len(self.fixList):
                """ next way point is still in the fix list => not yet the arrival airport """
                headWayPoint = self.wayPointsDict[self.fixList[self.flightListIndex + 1]]

                """ turn and fly """
                endOfSimulation, initialHeadingDegrees, elapsedTimeSeconds, anticipatedTurnWayPoint = self.turnAndFly(
                    tailWayPoint=tailWayPoint,
                    headWayPoint=headWayPoint,
                    initialHeadingDegrees=initialHeadingDegrees,
                    headWayPointIndex=self.flightListIndex,
                )
            """ prepare for next loop """
            self.flightListIndex += 1

        """ return final heading of the last great circle """
        return endOfSimulation, initialHeadingDegrees

    def buildDeparturePhase(self):
        """ 
        this function manages the departure phases with a ground run and a climb ramp 
        """

        print self.className + " ============== build the departure ground run =========== "
        self.finalRoute = GroundRunLeg(
            runway=self.departureRunway, aircraft=self.aircraft, airport=self.departureAirport
        )

        distanceToLastFixMeters = self.computeDistanceToLastFixMeters(
            currentPosition=self.departureAirport, fixListIndex=0
        )
        distanceStillToFlyMeters = self.flightLengthMeters - self.finalRoute.getLengthMeters()

        elapsedTimeSeconds = 0.0
        self.finalRoute.buildDepartureGroundRun(
            deltaTimeSeconds=self.deltaTimeSeconds,
            elapsedTimeSeconds=elapsedTimeSeconds,
            distanceStillToFlyMeters=distanceStillToFlyMeters,
            distanceToLastFixMeters=distanceToLastFixMeters,
        )
        distanceStillToFlyMeters = self.flightLengthMeters - self.finalRoute.getLengthMeters()

        # print '==================== end of ground run ==================== '
        initialWayPoint = self.finalRoute.getLastVertex().getWeight()
        distanceToFirstFixNautics = initialWayPoint.getDistanceMetersTo(self.getFirstWayPoint()) * Meter2NauticalMiles
        # print '==================== Initial Climb Ramp ==================== '

        climbRamp = ClimbRamp(
            initialWayPoint=initialWayPoint,
            runway=self.departureRunway,
            aircraft=self.aircraft,
            departureAirport=self.departureAirport,
        )
        """ climb ramp of 5.0 nautics is not possible is first fix in between """
        climbRampLengthNautics = min(distanceToFirstFixNautics / 2.0, 5.0)
        climbRamp.buildClimbRamp(
            deltaTimeSeconds=self.deltaTimeSeconds,
            elapsedTimeSeconds=initialWayPoint.getElapsedTimeSeconds(),
            distanceStillToFlyMeters=distanceStillToFlyMeters,
            distanceToLastFixMeters=distanceToLastFixMeters,
            climbRampLengthNautics=climbRampLengthNautics,
        )
        self.finalRoute.addGraph(climbRamp)

        # print '============= initial condition for the route ================='

        initialWayPoint = self.finalRoute.getLastVertex().getWeight()
        lastLeg = self.finalRoute.getLastEdge()
        initialHeadingDegrees = lastLeg.getBearingTailHeadDegrees()
        print self.className + ": last leg orientation= {0:.2f} degrees".format(initialHeadingDegrees)

        #'''============= add way point in the fix list =============== '''
        self.insert(position="begin", wayPoint=initialWayPoint)
        # print self.className + ': fix list= {0}'.format(self.fixList)

        return initialHeadingDegrees, initialWayPoint

    def buildSimulatedArrivalPhase(self):

        print self.className + "=========== add final turn, descent and ground run ==================="
        arrivalGroundRun = GroundRunLeg(runway=self.arrivalRunway, aircraft=self.aircraft, airport=self.arrivalAirport)
        self.touchDownWayPoint = arrivalGroundRun.computeTouchDownWayPoint()
        print self.touchDownWayPoint
        """ distance from last fix to touch down """
        distanceToLastFixNautics = (
            self.touchDownWayPoint.getDistanceMetersTo(self.getLastWayPoint()) * Meter2NauticalMiles
        )

        print self.className + "===================== final 3 degrees descending glide slope ================"
        descentGlideSlope = DescentGlideSlope(
            runway=self.arrivalRunway,
            aircraft=self.aircraft,
            arrivalAirport=self.arrivalAirport,
            descentGlideSlopeDegrees=3.0,
        )
        """ if there is a fix nearer to 5 nautics of the touch-down then limit size of simulated glide slope """
        descentGlideSlopeSizeNautics = min(distanceToLastFixNautics / 2.0, 5.0)
        """ build simulated glide slope """
        descentGlideSlope.buildSimulatedGlideSlope(descentGlideSlopeSizeNautics)
        self.firstGlideSlopeWayPoint = descentGlideSlope.getVertex(v=0).getWeight()
        print self.className + ": top of arrival glide slope= {0}".format(self.firstGlideSlopeWayPoint)

        print self.className + " ================= need a turn leg to find the junction point the last way-point in the fix list to the top of the final glide slope"
        """
        initial heading is the orientation of the run-way
        """
        lastFixListWayPoint = self.wayPointsDict[self.fixList[-1]]
        initialHeadingDegrees = self.arrivalRunway.getTrueHeadingDegrees()

        lastTurnLeg = TurnLeg(
            initialWayPoint=self.firstGlideSlopeWayPoint,
            finalWayPoint=lastFixListWayPoint,
            initialHeadingDegrees=initialHeadingDegrees,
            aircraft=self.aircraft,
            reverse=True,
        )
        lastTurnLeg.buildNewSimulatedArrivalTurnLeg(
            deltaTimeSeconds=self.deltaTimeSeconds,
            elapsedTimeSeconds=0.0,
            distanceStillToFlyMeters=0.0,
            simulatedAltitudeSeaLevelMeters=self.firstGlideSlopeWayPoint.getAltitudeMeanSeaLevelMeters(),
            flightPathAngleDegrees=3.0,
            bankAngleDegrees=5.0,
        )
        descentGlideSlope.addGraph(lastTurnLeg)
        # print self.className + ': compute arrival phase length= {0:.2f} meters'.format(descentGlideSlope.getLengthMeters())
        # descentGlideSlope.createXlsxOutputFile()
        # descentGlideSlope.createKmlOutputFile()
        """ prepare next step """
        beginOfLastTurnLeg = lastTurnLeg.getVertex(v=0).getWeight()
        print self.className + ": begin of last turn= {0}".format(beginOfLastTurnLeg)

        """ add the three last way-points in the fix list """
        self.insert(position="end", wayPoint=beginOfLastTurnLeg)
        """ update the length of the flight path """
        self.distanceFromApproachToTouchDownMeters = descentGlideSlope.getLengthMeters()
        self.flightLengthMeters = self.computeLengthMeters() + descentGlideSlope.getLengthMeters()
        print self.className + ": updated flight path length= {0:.2f} nautics".format(
            self.flightLengthMeters * Meter2NauticalMiles
        )
        """ target approach fix is equal to the begin of the SIMULATED last turn leg """
        self.aircraft.setTargetApproachWayPoint(beginOfLastTurnLeg)
        self.aircraft.setArrivalRunwayTouchDownWayPoint(self.touchDownWayPoint)
        print self.className + ": fix list= {0}".format(self.fixList)

    def buildArrivalPhase(self, initialHeadingDegrees):

        print self.className + "==================== add last turn ==================== "
        if self.isDomestic() or self.isInBound():
            endOfLastGreatCircleWayPoint = self.finalRoute.getLastVertex().getWeight()

            finalHeadingDegrees = self.arrivalRunway.getTrueHeadingDegrees()
            finalHeadingDegrees = math.fmod(finalHeadingDegrees + 180.0, 360.0)
            print self.className + ": runway final heading= {0:.2f} degrees".format(finalHeadingDegrees)

            turnLeg = TurnLeg(
                initialWayPoint=endOfLastGreatCircleWayPoint,
                # finalWayPoint    = self.firstGlideSlopeWayPoint,
                finalWayPoint=self.touchDownWayPoint,
                initialHeadingDegrees=initialHeadingDegrees,
                aircraft=self.aircraft,
                reverse=False,
            )

            distanceStillToFlyMeters = self.flightLengthMeters - self.finalRoute.getLengthMeters()
            distanceToLastFixMeters = self.computeDistanceToLastFixMeters(
                currentPosition=endOfLastGreatCircleWayPoint, fixListIndex=self.flightListIndex
            )
            distanceToLastFixMeters = distanceStillToFlyMeters
            """ for the last turn => final heading towards the runway orientation """
            deltaTimeSeconds = 0.1
            turnLeg.buildTurnLeg(
                deltaTimeSeconds=deltaTimeSeconds,
                elapsedTimeSeconds=endOfLastGreatCircleWayPoint.getElapsedTimeSeconds(),
                distanceStillToFlyMeters=distanceStillToFlyMeters,
                distanceToLastFixMeters=distanceToLastFixMeters,
                finalHeadingDegrees=finalHeadingDegrees,
                lastTurn=True,
                bankAngleDegrees=5.0,
            )
            self.finalRoute.addGraph(turnLeg)

            endOfTurnLegWayPoint = self.finalRoute.getLastVertex().getWeight()
            """ ============= use touch-down way-point to compute distance to fly ============="""
            distanceStillToFlyMeters = endOfTurnLegWayPoint.getDistanceMetersTo(self.touchDownWayPoint)
            print self.className + ": distance still to fly= {0:.2f} nautics".format(
                distanceStillToFlyMeters * Meter2NauticalMiles
            )

            # print '==================== add descent slope ================= '
            descentGlideSlope = DescentGlideSlope(
                runway=self.arrivalRunway,
                aircraft=self.aircraft,
                arrivalAirport=self.arrivalAirport,
                descentGlideSlopeDegrees=3.0,
            )

            flownDistanceMeters = self.finalRoute.getLengthMeters()
            distanceStillToFlyMeters = self.flightLengthMeters - self.finalRoute.getLengthMeters()
            distanceToLastFixMeters = self.computeDistanceToLastFixMeters(
                currentPosition=endOfTurnLegWayPoint, fixListIndex=self.flightListIndex
            )
            distanceToLastFixMeters = distanceStillToFlyMeters

            descentGlideSlope.buildGlideSlope(
                deltaTimeSeconds=self.deltaTimeSeconds,
                elapsedTimeSeconds=endOfTurnLegWayPoint.getElapsedTimeSeconds(),
                initialWayPoint=endOfTurnLegWayPoint,
                flownDistanceMeters=flownDistanceMeters,
                distanceStillToFlyMeters=distanceStillToFlyMeters,
                distanceToLastFixMeters=distanceToLastFixMeters,
            )
            self.finalRoute.addGraph(descentGlideSlope)
            endOfDescentGlideSlope = self.finalRoute.getLastVertex().getWeight()

            # print '================= add arrival ground run ================'
            arrivalGroundRun = GroundRunLeg(
                runway=self.arrivalRunway, aircraft=self.aircraft, airport=self.arrivalAirport
            )
            arrivalGroundRun.buildArrivalGroundRun(
                deltaTimeSeconds=self.deltaTimeSeconds,
                elapsedTimeSeconds=endOfDescentGlideSlope.getElapsedTimeSeconds(),
                initialWayPoint=endOfDescentGlideSlope,
            )
            self.finalRoute.addGraph(arrivalGroundRun)

    def computeFlight(self, deltaTimeSeconds):
        """ 
        main entry to compute a whole flight 
        """
        self.deltaTimeSeconds = deltaTimeSeconds

        assert not (self.aircraft is None)
        assert not (self.departureRunway is None)
        assert not (self.departureAirport is None)

        if self.isDomestic() or self.isOutBound():
            initialHeadingDegrees, initialWayPoint = self.buildDeparturePhase()

        if self.isDomestic() or self.isInBound():
            assert not (self.arrivalAirport is None)
            self.buildSimulatedArrivalPhase()

        # print '==================== Loop over the fix list ==================== '

        endOfSimulation, initialHeadingDegrees = self.loopThroughFixList(
            initialHeadingDegrees=initialHeadingDegrees, elapsedTimeSeconds=initialWayPoint.getElapsedTimeSeconds()
        )

        if endOfSimulation == False:
            # print '=========== build arrival phase =============='
            self.buildArrivalPhase(initialHeadingDegrees)

        print self.className + " ========== delta mass status =============="
        print self.className + ": initial mass= {0:.2f} kilograms = {1:.2f} pounds".format(
            self.aircraft.getAircraftInitialMassKilograms(),
            self.aircraft.getAircraftInitialMassKilograms() * Kilogram2Pounds,
        )
        print self.className + ": final mass= {0:.2f} kilograms = {1:.2f} pounds".format(
            self.aircraft.getAircraftCurrentMassKilograms(),
            self.aircraft.getAircraftCurrentMassKilograms() * Kilogram2Pounds,
        )
        print self.className + ": diff mass= {0:.2f} kilograms = {1:.2f} pounds".format(
            self.aircraft.getAircraftInitialMassKilograms() - self.aircraft.getAircraftCurrentMassKilograms(),
            (self.aircraft.getAircraftInitialMassKilograms() - self.aircraft.getAircraftCurrentMassKilograms())
            * Kilogram2Pounds,
        )
        print self.className + " ========== delta mass status =============="

    def createFlightOutputFiles(self):
        """ build outputs """
        self.finalRoute.createXlsxOutputFile()
        self.finalRoute.createKmlOutputFile()
        """ add a prefix to the file path to identify the departure and arrival airport """
        filePrefix = ""
        if not (self.departureAirport is None):
            filePrefix = self.departureAirport.getICAOcode()
            if not (self.arrivalAirport is None):
                filePrefix += "-" + self.arrivalAirport.getICAOcode()
        self.aircraft.createStateVectorOutputFile(filePrefix)
        print self.className + ": final route length= {0} nautics".format(
            self.finalRoute.getLengthMeters() * Meter2NauticalMiles
        )