def __str__ ( self ): return '<Edge S:%d,%d T:%d,%d len:%d>' % ( DbU.toLambda(self.source.x) , DbU.toLambda(self.source.y) , DbU.toLambda(self.target.x) , DbU.toLambda(self.target.y) , DbU.toLambda(self.length) )
def __str__ ( self ): return '<Node P:%d,%d (realY:%d) d:%d %s>' % ( DbU.toLambda(self.x) , DbU.toLambda(self.y) , DbU.toLambda(self.realY) , DbU.toLambda(self.distance) , str(self.component) )
def _computeHanan ( self ): xs = [ ] ys = [ ] realYs = { } for node in self._nodes: if not node.x in xs: xs.append( node.x ) if not node.y in xs: ys.append( node.y ) realYs[ node.y ] = node.component.getY() xs.sort() ys.sort() trace( 550, '+,+', '\tHanan matrix: %ix%i' % (len(xs),len(ys)) ) self._hananNodes = [ ] for x in xs: trace( 550, '\n' ) trace( 550, '\t' ) for y in ys: isNode = False for node in self._nodes: if node.x == x and node.y == y: isNode = True if isNode: trace( 550, ' -:%04.2d,%04.2d' % (DbU.toLambda(x),DbU.toLambda(y)) ) continue trace( 550, ' H:%04.2d,%04.2d' % (DbU.toLambda(x),DbU.toLambda(y)) ) self._hananNodes.append( Node( None, x, y ) ) self._hananNodes[-1].realY = realYs[ y ] trace( 550, ',--', "\n" ) return
def computeAbutmentBox(cell, spaceMargin, aspectRatio, cellGauge): sliceHeight = DbU.toLambda(cellGauge.getSliceHeight()) instancesNb = 0 cellLength = 0 for occurrence in cell.getLeafInstanceOccurrences(): instance = occurrence.getEntity() instancesNb += 1 cellLength += int( DbU.toLambda(instance.getMasterCell().getAbutmentBox().getWidth())) # ar = x/y S = x*y = spaceMargin*SH x=S/y ar = S/y^2 # y = sqrt(S/AR) gcellLength = float(cellLength) * (1 + spaceMargin) / sliceHeight rows = math.sqrt(gcellLength / aspectRatio) if math.trunc(rows) != rows: rows = math.trunc(rows) + 1 else: rows = math.trunc(rows) columns = gcellLength / rows if math.trunc(columns) != columns: columns = math.trunc(columns) + 1 else: columns = math.trunc(columns) print ' o Creating abutment box (margin:%.1f%%, aspect ratio:%.1f%%, g-length:%.1fl)' \ % (spaceMargin*100.0,aspectRatio*100.0,(cellLength/sliceHeight)) print ' - GCell grid: [%dx%d]' % (columns, rows) UpdateSession.open() abutmentBox = Box(DbU.fromLambda(0), DbU.fromLambda(0), DbU.fromLambda(columns * sliceHeight), DbU.fromLambda(rows * sliceHeight)) cell.setAbutmentBox(abutmentBox) UpdateSession.close() return abutmentBox
def connect(self, contact): contactBb = contact.getBoundingBox() if contactBb.getYMin() < self.side.innerBb.getYMin() \ or contactBb.getYMax() > self.side.innerBb.getYMax(): raise ErrorMessage(1, [ '%s is outside rail/corona Y range' % str(contact), 'power pad is likely to be to far off north or south.', '(corona:%s)' % str(self.side.innerBb) ]) #if self.net != contact.getNet(): return False if self.vias.has_key(contact.getY()): return False trace( 550, ',+', '\tVerticalRail.connect() [%s] @%d\n' % (self.order, DbU.toLambda(self.axis))) trace(550, contact) keys = self.vias.keys() keys.sort() insertIndex = bisect.bisect_left(keys, contact.getY()) trace(550, ',+', '\tkeys:') for key in keys: trace(550, ' %d' % DbU.toLambda(key)) trace(550, '\n') if len(keys) > 0: if insertIndex < len(keys): insertPosition = keys[insertIndex] trace(550, '\tinsertIndex:%d' % insertIndex) trace( 550, '\tCheck NEXT contactBb:%s via:%s\n' \ % ( contactBb , self.vias[insertPosition][2].getBoundingBox()) ) if contactBb.getYMax( ) >= self.vias[insertPosition][2].getBoundingBox().getYMin(): trace(550, ',--', '\tReject %s intersect NEXT\n' % contact) return False if insertIndex > 0: trace( 550, '\tcheck PREVIOUS contactBb:%s via:%s\n' \ % ( contactBb , self.vias[keys[insertIndex-1]][2].getBoundingBox()) ) if self.vias[keys[insertIndex - 1]][2].getBoundingBox( ).getYMax() >= contactBb.getYMin(): trace(550, ',--', '\tReject %s intersect PREVIOUS\n' % contact) return False self.vias[contact.getY()] = [ contact.getY(), StackedVia(self.net, self.side.getLayerDepth(self.side.getVLayer()), self.axis, contact.getY(), self.side.vRailWidth - DbU.fromLambda(1.0), contact.getHeight() - DbU.fromLambda(1.0)), contact ] trace(550, ',--' '\tADD %s\n' % contact) self.vias[contact.getY()][1].mergeDepth( self.side.getLayerDepth(contact.getLayer())) return True
def _RSMTtoLayout(self, mst, net): for node in mst.nodes: if not node.component: x = node.realX if node.realX in self.usedVTracks: x += self.routingGauge.getLayerGauge( self.verticalDeepDepth).getPitch() # This is a Steiner point. node.component = self.createContact( net, x, node.y + self.cellGauge.getSliceHeight() / 2 - self.routingGauge.getLayerGauge( self.horizontalDeepDepth).getPitch(), GaugeConf.DeepDepth) trace( 550, '\tCreate (Steiner) node.component: @Y%d (y:%d - %d) %s\n' \ % (DbU.toLambda(node.realY) ,DbU.toLambda(node.y) ,DbU.toLambda(self.routingGauge.getLayerGauge(self.horizontalDeepDepth).getPitch()) ,node.component) ) else: # This a terminal (graph) point for edge in node.edges: flags = GaugeConf.HAccess | GaugeConf.DeepDepth if not edge.isHorizontal(): if node.isSame(edge.source) or edge.isVertical(): flags &= ~GaugeConf.HAccess break flags |= GaugeConf.OffsetTop1 if node.realX in self.usedVTracks: flags |= GaugeConf.OffsetRight1 node.component = self.rpAccess(node.component, flags) for edge in mst.edges: sourceContact = edge.source.component targetContact = edge.target.component if edge.isHorizontal(): self.createHorizontal(sourceContact, targetContact, targetContact.getY(), GaugeConf.DeepDepth) elif edge.isVertical(): self.createVertical(sourceContact, targetContact, sourceContact.getX(), GaugeConf.DeepDepth) else: turn = self.createContact(edge.source.component.getNet(), sourceContact.getX(), targetContact.getY(), GaugeConf.DeepDepth) self.createVertical(sourceContact, turn, sourceContact.getX(), GaugeConf.DeepDepth) self.createHorizontal(turn, targetContact, targetContact.getY(), GaugeConf.DeepDepth) return
def __init__(self, conf, cell, clockNet, area): GaugeConfWrapper.__init__(self, conf.gaugeConf) self.minSide = DbU.fromLambda( Cfg.getParamInt('clockTree.minimumSide').asInt()) if self.minSide < DbU.fromLambda(100.0): raise ErrorMessage( 3, 'ClockTree: clockTree.minimumSide (%g) is less than 100 lambda.' \ % DbU.toLambda(self.minSide) ) self.framework = CRL.AllianceFramework.get() self.cell = cell self.area = area self.childs = [] self._getBufferIo() self.tieCell = self.framework.getCell('rowend_x0', CRL.Catalog.State.Views) self.cellGauge = self.framework.getCellGauge() self.topBuffer = Instance.create(self.cell, 'ck_htree', self.bufferCell) self.cloneds = [self.cell] self.usedVTracks = [] self._feedCount = 0 self.masterClock = clockNet if not self.masterClock: for net in cell.getNets(): if net.isClock(): self.masterClock = net break if not self.masterClock: print '[WARNING] Cell %s has no clock net.' % cell.getName() self._createChildNet(self.topBuffer, 'ck_htree') return
def create ( conf, cell, clockNet, clockBox ): if clockBox.isEmpty(): raise ErrorMessage( 3, 'ClockTree: The clock area is empty.' ) aspectRatio = DbU.toLambda( clockBox.getWidth() ) / DbU.toLambda( clockBox.getHeight() ) if aspectRatio > 1.5 or aspectRatio < 0.5: raise ErrorMessage( 3, 'ClockTree: aspect ratio %f is disproportionate, must be between 0.5 and 1.5.' \ % aspectRatio ) ht = HTree( conf, cell, clockNet, clockBox ) print(' o Creating Clock H-Tree for <%s>.' % cell.getName()) ht.build() trace( 550, '\tht.build() OK\n' ) ht.place() trace( 550, '\tht.place() OK\n' ) #ht.route() print(' - H-Tree depth: %d' % ht.getTreeDepth()) trace( 550, '\tusedVTracks: %s\n' % str(ht.usedVTracks) ) return ht
def runI1S ( self ): self._edges = [ ] self._length = 0 if len(self._nodes) < 2: return if len(self._nodes) == 2: self._edges.append( Edge( self._nodes[0], self._nodes[1] ) ) self._length = self._edges[0].length return self._computeHanan() count = 0 trace( 550, '++' ) minMST = RMST( 'MST[%i]' % count ) minMST.setNodes( self._nodes ) minMST.runPrim() trace( 550, '-,+', '\tInitial %s length %d\n' % (minMST.name,DbU.toLambda(len(minMST))) ) minMST.showEdges( 550 ) trace( 550, '-' ) addedSteiner = True while addedSteiner: addedSteiner = False for steinerNode in self._hananNodes: count += 1 trace( 550, '\tTrying with Steiner point H:%d,%d\n' \ % (DbU.toLambda(steinerNode.x),DbU.toLambda(steinerNode.y)) ) mst = RMST( 'MST[%i]' % count ) mst.setNodes( self._nodes ) mst.copyNode( steinerNode ) mst.runPrim() trace( 550, '\tCurrent %s length %d\n' % (mst.name,DbU.toLambda(len(mst))) ) mst.showEdges( 550 ) if len(mst) < len(minMST): trace( 550, '\tAccept min RST.\n' ) minMST = mst addedSteiner = True if addedSteiner: self.copyNode( minMST.nodes[-1] ) self.nodes[-1].setFlags( Node.KeepPoint ) i = 0 while i < len(self._edges): if self._nodes[i].flags & Node.SteinerPoint \ and self._nodes[i].degree < 3: trace( 550, 'Deleting unused Steiner point H:%d,%d' \ % (DbU.toLambda(self._nodes[i].x),DbU.toLambda(self._nodes[i].y)) ) del self._nodes[i] else: i += 1 self._nodes = minMST.nodes self._edges = minMST.edges self._length = minMST.length trace( 550, '-' ) return
def connectPads ( self, padSide ): for terminal in padSide._powerContacts: #print ' Connect to [-%i] @%d' % (0, DbU.toLambda(self.getOuterRail(0).axis)) self.getOuterRail( 0 ).connect( terminal ) halfRails = (len(self._rails)-1)/2 trace( 550, 'halfRails:%i' % halfRails ) for terminal in padSide._powerContacts: trace( 550, ',+', '\tConnect pad terminal %s\n' % terminal ) for i in range(halfRails): trace( 550, '\tConnect to [-%i] @%d\n' % (i+1, DbU.toLambda(self.getOuterRail(i+1).axis)) ) self.getOuterRail(i+1).connect( terminal ) trace( 550, '-' ) return
def _check(self, checkSize, checkName): sideName = 'unknown' chipSize = 0 if self._type == chip.North or self._type == chip.South: chipSize = self._corona.chipSize.getWidth() sideName = 'wide' elif self._type == chip.East or self._type == chip.West: chipSize = self._corona.chipSize.getHeight() sideName = 'tall' if checkSize > chipSize: sliceHeight = self._corona.getSliceHeight() if checkSize % sliceHeight != 0: checkSize += sliceHeight - (checkSize % sliceHeight) print ErrorMessage(1, [ 'Chip is not %s enought to accomodate the %s,' % (sideName, checkName), 'needs %dl, but only has %dl.' % (DbU.toLambda(checkSize), DbU.toLambda(chipSize)) ]) return False return True
def Alliance(db): print('\n') print('===========================================================') print('Checking DbU.') print('DbU.fromLamdba(5) :', DbU.fromLambda(5)) print('DbU.toLamdba(12000) :', DbU.toLambda(12000)) print('===========================================================') print('Checking LayerMask.') mask0 = Layer.Mask(0b000101) mask1 = Layer.Mask(0b001110) mask3 = mask0 & mask1 mask4 = mask0 | mask1 print('mask0 :', mask0) print('mask1 :', mask1) print('mask0 & mask1 :', mask3) print('mask0 | mask1 :', mask4) print('mask0.containts(mask1):', mask0.contains(mask1)) print('===========================================================') print('Checking DataBase.') db2 = db.getTechnology().getDataBase() if db == db2: print("OK DataBase is unique.") else: print("KO DATABASE IS DUPLICATED!") print('===========================================================') print("Checking layers.") technology = db.getTechnology() rlayer = technology.getLayer('METAL2') print("METAL2") print(" Minimal size :", DbU.toLambda(rlayer.getMinimalSize())) print(" Minimal spacing :", DbU.toLambda(rlayer.getMinimalSpacing())) print(" Pitch :", DbU.toLambda(rlayer.getPitch())) print(" Cut above :", rlayer.getCutAbove()) print(" isWorking :", rlayer.isWorking()) dlayer = technology.getLayer('NDIF') print('NDIF', dlayer.getMask()) for blayer in dlayer.getBasicLayers(): print(' ', blayer) tlayer = technology.getLayer('NTRANS') print('NTRANS', tlayer.getMask()) for blayer in tlayer.getBasicLayers(): print(' ', blayer) clayer = technology.getLayer('CONT_DIF_N') print('CONT_DIF_N', clayer.getMask()) for blayer in clayer.getBasicLayers(): print(' ', blayer) print('===========================================================') print('Checking RoutingGauge.') layer = technology.getLayer('METAL3') rg = AllianceFramework.get().getRoutingGauge() print('rg.getName() :', rg.getName()) print('rg.getDepth() :', rg.getDepth()) print('rg.getLayerDepth(METAL3) :', rg.getLayerDepth(layer)) print('rg.getLayerGauge(METAL3) :', rg.getLayerGauge(layer)) print('rg.getLayerDirection(2) :', rg.getLayerDirection(2)) print('rg.getRoutingLayer(2) :', rg.getRoutingLayer(2)) rlg = rg.getLayerGauge(2) print('rlg.getLayer() :', rlg.getLayer()) print('rlg.getBlockageLayer() :', rlg.getBlockageLayer()) print('rlg.getDensity() :', rlg.getDensity()) print('rlg.getType() :', rlg.getType()) print('rlg.getPitch() :', DbU.toLambda(rlg.getPitch())) for rlg in rg.getLayerGauges(): print('rlg.getLayer() : ', rlg.getLayer()) #print technology.getName() #for layer in technology.getLayers(): # print 'TECHNO:', layer print('===========================================================') print('\n') return
def Layout(self): #HCELL = 50 HCELL = DbU.toLambda( self.Prech[0]._hur_masterCell.getAbutmentBox().getHeight()) # Lignes de bit bottom = 0 for i in range(self._nbit): if i % 2: # lignes impaires sym1 = SYM_Y sym2 = SYMXY else: # lignes paires sym1 = NOSYM sym2 = SYM_X Place(self.Prech[i], sym1, XY(0, bottom + i * HCELL)) for j in range(0, self._nmot, 4): PlaceRight(self.Bit[i][j], sym2) PlaceRight(self.Bit[i][j + 2], sym1) PlaceRight(self.Sense[i], sym1) # Premiere ligne de la zone des buffers bottom = self._nbit * HCELL Place(self.PrechBuf0, NOSYM, XY(0, bottom)) for j in range(0, self._nmot, 4): PlaceRight(self.Buf0[j], SYM_X) PlaceRight(self.Buf0[j + 2], NOSYM) PlaceRight(self.SenseBuf0, NOSYM) # Deuxieme ligne de la zone des buffers bottom = (self._nbit + 1) * HCELL Place(self.PrechBuf1, SYM_Y, XY(0, bottom)) for j in range(0, self._nmot, 4): PlaceRight(self.Buf1[j], SYMXY) PlaceRight(self.Buf1[j + 2], SYM_Y) PlaceRight(self.SenseBuf1, SYM_Y) # Premiere ligne de la zone du decodeur bottom = (self._nbit + 2) * HCELL Place(self.PrechDecB, NOSYM, XY(0, bottom)) for j in range(0, self._nmot, 8): PlaceRight(self.Dec[j], SYM_X) PlaceRight(self.Dec[j + 2], NOSYM) PlaceRight(self.Dec[j + 4], SYM_X) PlaceRight(self.Dec[j + 6], NOSYM) PlaceRight(self.SenseDecAd12, NOSYM) # Deuxieme ligne de la zone du decodeur bottom = (self._nbit + 3) * HCELL if adrange == 8: # adresse sur 8 bits : on decode 5 bits Place(self.PrechDecU, SYM_Y, XY(0, bottom)) for j in range(0, self._nmot, 8): PlaceRight(self.MemDec[j], SYM_Y) PlaceRight(self.SenseDecAd, SYM_Y) if adrange == 7: # adresse sur 7 bits : on decode 4 bits Place(self.PrechDecU, SYM_Y, XY(0, bottom)) for j in range(0, self._nmot, 8): PlaceRight(self.MemDec[j], SYM_Y) PlaceRight(self.SenseDecAd, SYM_Y) if adrange == 6: # adresse sur 6 bits : on decode 3 bits Place(self.PrechDecU, SYM_Y, XY(0, bottom)) for j in range(0, self._nmot, 8): PlaceRight(self.MemDec[j], SYM_Y) PlaceRight(self.SenseDecAd, SYM_Y) if adrange == 5: # adresse sur 5 bits : on decode 2 bits Place(self.PrechDecU, SYM_Y, XY(0, bottom)) for j in range(0, self._nmot, 8): PlaceRight(self.MemDec[j], SYM_Y) PlaceRight(self.SenseDecAd, SYM_Y)