def main(): data_name = "CALFW_29v2" data_path = "D:/DATA/" if "29v2" in data_name: X, y_true, N, dim, c_true = Ifuns.load_mat(data_path + "FaceData/" + data_name) else: X, y_true, N, dim, c_true = Ifuns.load_mat(data_path + data_name) print("hh") Y = Ifuns.kmeans(X, c_true, rep=10, init="random", par=1) acc = np.array([Ifuns.accuracy(y_true, y) for y in Y]) ari = np.array([Ifuns.ari(y_true, y) for y in Y]) ami = np.array([Ifuns.ami(y_true, y) for y in Y]) nmi = np.array([Ifuns.nmi(y_true, y) for y in Y]) print("{}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}".format(data_name, np.mean(acc), np.std(acc), np.mean(ari), np.std(ari), np.mean(ami), np.std(ami), np.mean(nmi), np.std(nmi)))
import numpy as np import IDEAL_NPU.funs as Ifuns from IDEAL_NPU.cluster import SSC X, y_true, N, dim, c_true = Ifuns.load_USPS() print("USPS", N, dim, c_true) obj = SSC(X=X, c_true=c_true) y = obj.clu(km_rep=10, way="NJW") acc = Ifuns.accuracy(y_true, y) print(acc) # paper: USPS, ACC, 67.52 %
# abandon import numpy as np import IDEAL_NPU.funs as Ifuns from backup import ISR data_name = "srbct" X, y_true, N, dim, c_true = Ifuns.load_mat("D:/DATA/" + data_name) print(data_name, N, dim, c_true) obj = ISR(X, c_true) knn_list = [10, 20, 30, 40, 50] acc = np.zeros(len(knn_list)) for i, knn in enumerate(knn_list): y = obj.clu(graph_knn=knn, sr_ITER=10) acc[i] = Ifuns.accuracy(y_true, y) print(acc) print(np.mean(acc)) # paper: USPS, ACC, 67.52 %
import numpy as np import IDEAL_NPU.funs as Ifuns from IDEAL_NPU.cluster import EEBC, EEBCX data_name = "mpeg7" X, y_true, N, dim, c_true = Ifuns.load_mat("D:/DATA/" + data_name) print(N, dim, c_true) # EEBC knn = 20 D = Ifuns.EuDist2(X, X, squared=True) ind_M = np.argsort(D, axis=1) NN = ind_M[:, :knn] NND = Ifuns.matrix_index_take(D, NN) obj = EEBC(NN.astype(np.int32), NND, c_true) obj.clu() y_pred = obj.y_pre acc = Ifuns.accuracy(y_true=y_true, y_pred=y_pred) print(acc) # EEBC-X obj = EEBCX(X, c_true) obj.clu() y_pred = obj.y acc = Ifuns.accuracy(y_true=y_true, y_pred=y_pred) print(acc)
import numpy as np from IDEAL_NPU.cluster import FCDMF from IDEAL_NPU import funs as Ifuns X, y_true, N, dim, c_true = Ifuns.load_mat("D:/DATA/face94_256.mat") X = Ifuns.normalize_fea(X, 0) print(N, dim, c_true) obj = FCDMF(X, c_true) Y = obj.clu(KTIMES=5) ret = [Ifuns.accuracy(y_true, y) for y in Y] print(ret) print(np.mean(ret))