def update_line_specipic_points(nums, data, axes, to_do, font_size, axis_font): """Update the lines in the axes for snapshot of the whole process""" colors = LAYERS_COLORS x_ticks = [0, 2, 4, 6, 8, 10] #Go over all the snapshot for i in range(len(nums)): num = nums[i] #Plot the right layer for layer_num in range(data.shape[3]): axes[i].scatter(data[0, :, num, layer_num], data[1, :, num, layer_num], color=colors[layer_num], s=105, edgecolors='black', alpha=0.85) utils.adjustAxes(axes[i], axis_font=axis_font, title_str='', x_ticks=x_ticks, y_ticks=[], x_lim=None, y_lim=None, set_xlabel=to_do[i][0], set_ylabel=to_do[i][1], x_label='$I(X;T)$', y_label='$I(T;Y)$', set_xlim=True, set_ylim=True, set_ticks=True, label_size=font_size)
def update_line_each_neuron(num, print_loss, Ix, axes, Iy, train_data, accuracy_test, epochs_bins, loss_train_data, loss_test_data, colors, epochsInds, font_size=18, axis_font=16, x_lim=[0, 12.2], y_lim=[0, 1.08], x_ticks=[], y_ticks=[]): """Update the figure of the infomration plane for the movie""" #Print the line between the points axes[0].clear() if len(axes) > 1: axes[1].clear() #Print the points for layer_num in range(Ix.shape[2]): for net_ind in range(Ix.shape[0]): axes[0].scatter(Ix[net_ind, num, layer_num], Iy[net_ind, num, layer_num], color=colors[layer_num], s=35, edgecolors='black', alpha=0.85) title_str = 'Information Plane - Epoch number - ' + str(epochsInds[num]) utils.adjustAxes(axes[0], axis_font, title_str, x_ticks, y_ticks, x_lim, y_lim, set_xlabel=True, set_ylabel=True, x_label='$I(X;T)$', y_label='$I(T;Y)$') #Print the loss function and the error if len(axes) > 1: axes[1].plot(epochsInds[:num], 1 - np.mean(accuracy_test[:, :num], axis=0), color='g') if print_loss: axes[1].plot(epochsInds[:num], np.mean(loss_test_data[:, :num], axis=0), color='y') nereast_val = np.searchsorted(epochs_bins, epochsInds[num], side='right') axes[1].set_xlim([0, epochs_bins[nereast_val]]) axes[1].legend(('Accuracy', 'Loss Function'), loc='best')
def plot_by_training_samples(I_XT_array, I_TY_array, axes, epochsInds, f, index_i, index_j, size_ind, font_size, y_ticks, x_ticks, colorbar_axis, title_str, axis_font, bar_font, save_name, samples_labels): """Print the final epoch of all the diffrenet training samples size """ max_index = size_ind if size_ind != -1 else I_XT_array.shape[2] - 1 cmap = plt.get_cmap('gnuplot') colors = [cmap(i) for i in np.linspace(0, 1, max_index + 1)] #Print the final epoch nums_epoch = -1 #Go over all the samples size and plot them with the right color for index_in_range in range(0, max_index): XT, TY = [], [] for layer_index in range(0, I_XT_array.shape[4]): XT.append( np.mean(I_XT_array[:, -1, index_in_range, nums_epoch, layer_index], axis=0)) TY.append( np.mean(I_TY_array[:, -1, index_in_range, nums_epoch, layer_index], axis=0)) axes[index_i, index_j].plot(XT, TY, marker='o', linestyle='-', markersize=12, markeredgewidth=0.2, linewidth=0.5, color=colors[index_in_range]) utils.adjustAxes(axes[index_i, index_j], axis_font=axis_font, title_str=title_str, x_ticks=x_ticks, y_ticks=y_ticks, x_lim=None, y_lim=None, set_xlabel=index_i == axes.shape[0] - 1, set_ylabel=index_j == 0, x_label='$I(X;T)$', y_label='$I(T;Y)$', set_xlim=True, set_ylim=True, set_ticks=True, label_size=font_size) #Create color bar and save it if index_i == axes.shape[0] - 1 and index_j == axes.shape[1] - 1: utils.create_color_bar(f, cmap, colorbar_axis, bar_font, epochsInds, title='Training Data') f.savefig(save_name + '.png', dpi=150, format='png')
def plot_alphas(str_name, save_name='dist'): data_array = utils.get_data(str_name) params = np.squeeze(np.array(data_array['information'])) I_XT_array = np.squeeze(np.array(extract_array(params, 'local_IXT'))) """" for i in range(I_XT_array.shape[2]): f1, axes1 = plt.subplots(1, 1) axes1.plot(I_XT_array[:,:,i]) plt.show() return """ I_XT_array_var = np.squeeze( np.array(extract_array(params, 'IXT_vartional'))) I_TY_array_var = np.squeeze( np.array(extract_array(params, 'ITY_vartional'))) I_TY_array = np.squeeze(np.array(extract_array(params, 'local_ITY'))) """ f1, axes1 = plt.subplots(1, 1) #axes1.plot(I_XT_array,I_TY_array) f1, axes2 = plt.subplots(1, 1) axes1.plot(I_XT_array ,I_TY_array_var) axes2.plot(I_XT_array ,I_TY_array) f1, axes1 = plt.subplots(1, 1) axes1.plot(I_TY_array, I_TY_array_var) axes1.plot([0, 1.1], [0, 1.1], transform=axes1.transAxes) #axes1.set_title('Sigmma=' + str(sigmas[i])) axes1.set_ylim([0, 1.1]) axes1.set_xlim([0, 1.1]) plt.show() return """ #for i in range() sigmas = np.linspace(0, 0.3, 20) for i in range(0, 20): print(i, sigmas[i]) f1, axes1 = plt.subplots(1, 1) axes1.plot(I_XT_array, I_XT_array_var[:, :, i], linewidth=5) axes1.plot([0, 15.1], [0, 15.1], transform=axes1.transAxes) axes1.set_title('Sigmma=' + str(sigmas[i])) axes1.set_ylim([0, 15.1]) axes1.set_xlim([0, 15.1]) plt.show() return epochs_s = data_array['params']['epochsInds'] f, axes = plt.subplots(1, 1) #epochs_s = [] colors = LAYERS_COLORS linestyles = ['--', '-.', '-', '', ' ', ':', ''] epochs_s = [0, -1] for j in epochs_s: for i in range(0, I_XT_array.shape[1]): axes.plot(sigmas, I_XT_array_var[j, i, :], color=colors[i], linestyle=linestyles[j], label='Layer-' + str(i) + ' Epoch - ' + str(epochs_s[j])) title_str = 'I(X;T) for different layers as function of $\sigma$ (The width of the gaussian)' x_label = '$\sigma$' y_label = '$I(X;T)$' x_lim = [0, 3] utils.adjustAxes(axes, axis_font=20, title_str=title_str, x_ticks=[], y_ticks=[], x_lim=x_lim, y_lim=None, set_xlabel=True, set_ylabel=True, x_label=x_label, y_label=y_label, set_xlim=True, set_ylim=False, set_ticks=False, label_size=20, set_yscale=False, set_xscale=False, yscale=None, xscale=None, ytick_labels='', genreal_scaling=False) axes.legend() plt.show()
def update_axes(axes, xlabel, ylabel, xlim, ylim, title, xscale, yscale, x_ticks, y_ticks, p_0, p_1, font_size=30, axis_font=25, legend_font=16): """adjust the axes to the ight scale/ticks and labels""" categories = 6 * [''] labels = [ '$10^{-5}$', '$10^{-4}$', '$10^{-3}$', '$10^{-2}$', '$10^{-1}$', '$10^0$', '$10^1$' ] #The legents of the mean and the std leg1 = plt.legend(p_0, categories, title=r'$\|Mean\left(\nabla{W_i}\right)\|$', loc='best', fontsize=legend_font, markerfirst=False, handlelength=5) leg2 = plt.legend(p_1, categories, title=r'$STD\left(\nabla{W_i}\right)$', loc='best', fontsize=legend_font, markerfirst=False, handlelength=5) leg1.get_title().set_fontsize('21') # legend 'Title' fontsize leg2.get_title().set_fontsize('21') # legend 'Title' fontsize plt.gca().add_artist(leg1) plt.gca().add_artist(leg2) utils.adjustAxes(axes, axis_font=20, title_str='', x_ticks=x_ticks, y_ticks=y_ticks, x_lim=xlim, y_lim=ylim, set_xlabel=True, set_ylabel=True, x_label=xlabel, y_label=ylabel, set_xlim=True, set_ylim=True, set_ticks=True, label_size=font_size, set_yscale=True, set_xscale=True, yscale=yscale, xscale=xscale, ytick_labels=labels, genreal_scaling=True)
def update_line(num, print_loss, data, axes, epochsInds, test_error, test_data, epochs_bins, loss_train_data, loss_test_data, colors, font_size=18, axis_font=16, x_lim=[0, 12.2], y_lim=[0, 1.08], x_ticks=[], y_ticks=[]): """Update the figure of the infomration plane for the movie""" #Print the line between the points cmap = ListedColormap(LAYERS_COLORS) segs = [] for i in range(0, data.shape[1]): x = data[0, i, num, :] y = data[1, i, num, :] points = np.array([x, y]).T.reshape(-1, 1, 2) segs.append(np.concatenate([points[:-1], points[1:]], axis=1)) segs = np.array(segs).reshape(-1, 2, 2) axes[0].clear() if len(axes) > 1: axes[1].clear() lc = LineCollection(segs, cmap=cmap, linestyles='solid', linewidths=0.3, alpha=0.6) lc.set_array(np.arange(0, 5)) #Print the points for layer_num in range(data.shape[3]): axes[0].scatter(data[0, :, num, layer_num], data[1, :, num, layer_num], color=colors[layer_num], s=35, edgecolors='black', alpha=0.85) axes[1].plot(epochsInds[:num], 1 - np.mean(test_error[:, :num], axis=0), color='r') title_str = 'Information Plane - Epoch number - ' + str(epochsInds[num]) utils.adjustAxes(axes[0], axis_font, title_str, x_ticks, y_ticks, x_lim, y_lim, set_xlabel=True, set_ylabel=True, x_label='$I(X;T)$', y_label='$I(T;Y)$') title_str = 'Precision as function of the epochs' utils.adjustAxes(axes[1], axis_font, title_str, x_ticks, y_ticks, x_lim, y_lim, set_xlabel=True, set_ylabel=True, x_label='# Epochs', y_label='Precision')
def plot_all_epochs(I_XT_array, I_TY_array, axes, epochsInds, f, index_i, index_j, size_ind, font_size, y_ticks, x_ticks, colorbar_axis, title_str, axis_font, bar_font, save_name, epochFlag, plot_error=True, index_to_emphasis=1000): """Plot the infomration plane with the epochs in diffrnet colors """ #If we want to plot the train and test error # if plot_error: # fig_strs = ['train_error','test_error','loss_train','loss_test' ] # fig_data = [np.squeeze(gen_data[fig_str]) for fig_str in fig_strs] # f1 = plt.figure(figsize=(12, 8)) # ax1 = f1.add_subplot(111) # mean_sample = False if len(fig_data[0].shape)==1 else True # if mean_sample: # fig_data = [ np.mean(fig_data_s, axis=0) for fig_data_s in fig_data] # for i in range(len(fig_data)): # ax1.plot(epochsInds, fig_data[i],':', linewidth = 3 , label = fig_strs[i]) # ax1.legend(loc='best') f = plt.figure(figsize=(12, 8)) axes = f.add_subplot(111) axes = np.array([[axes]]) I_XT_array = np.squeeze(I_XT_array) I_TY_array = np.squeeze(I_TY_array) if len(I_TY_array[0].shape) > 1: I_XT_array = np.mean(I_XT_array, axis=0) I_TY_array = np.mean(I_TY_array, axis=0) max_index = size_ind if size_ind != -1 else (I_XT_array.shape[0] - 2) cmap = plt.get_cmap('gnuplot') #For each epoch we have diffrenet color if epochFlag: colors = [cmap(i) for i in np.linspace(0, 1, np.max(epochsInds) + 1)] else: colors = [cmap(i) for i in np.linspace(0, 1, np.max(epochsInds) + 1)][::-1] #Change this if we have more then one network arch nums_arc = -1 #Go over all the epochs and plot then with the right color for index_in_range in range(0, max_index): XT = I_XT_array[index_in_range, :] TY = I_TY_array[index_in_range, :] #If this is the index that we want to emphsis # if epochsInds[index_in_range] ==index_to_emphasis: # axes[index_i, index_j].plot(XT, TY, marker='o', linestyle=None, markersize=19, markeredgewidth=0.04, # linewidth=2.1, # color='g',zorder=10) # else: axes[index_i, index_j].plot(XT[:], TY[:], marker='o', linestyle='-', markersize=12, markeredgewidth=0.01, linewidth=0.2, color=colors[int(epochsInds[index_in_range])]) utils.adjustAxes(axes[index_i, index_j], axis_font=axis_font, title_str=title_str, x_ticks=x_ticks, y_ticks=y_ticks, x_lim=[0, 25.1], y_lim=None, set_xlabel=index_i == axes.shape[0] - 1, set_ylabel=index_j == 0, x_label='$I(X;T)$', y_label='$I(T;Y)$', set_xlim=False, set_ylim=False, set_ticks=True, label_size=font_size) #Save the figure and add color bar if index_i == axes.shape[0] - 1 and index_j == axes.shape[1] - 1: if epochFlag: utils.create_color_bar(f, cmap, colorbar_axis, bar_font, np.sort(epochsInds), title='Epochs') else: utils.create_color_bar(f, cmap, colorbar_axis, bar_font, np.sort(epochsInds)[::-1], title='Traces') f.savefig(save_name + '.png', dpi=500, format='png')