def test__rigid_bodies_drms(self): """ Test drms measure taking into account rigid bodies""" m = IMP.Model() sel = atom.CAlphaPDBSelector() prot1 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) prot2 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) hchains1 = atom.get_by_type(prot1, atom.CHAIN_TYPE) hchains2 = atom.get_by_type(prot2, atom.CHAIN_TYPE) xyzs1 = core.XYZs(atom.get_leaves(prot1)) xyzs2 = core.XYZs(atom.get_leaves(prot2)) x = 0 ranges = [] for h in hchains1: ls1 = (atom.get_leaves(h)) y = x + len(ls1) ranges.append((x, y)) x = y drms = atom.get_drms(xyzs1, xyzs2) rb_drms = atom.get_rigid_bodies_drms(xyzs1, xyzs2, ranges) self.assertAlmostEqual(rb_drms, 0) self.assertAlmostEqual(drms, rb_drms, delta=1e-3, msg="rb_drms != drms") # Same thing after transformation of each of the chains for h in hchains2: R = alg.get_random_rotation_3d() v = alg.get_random_vector_in(alg.get_unit_bounding_box_3d()) T = alg.Transformation3D(R, v) ls = atom.get_leaves(h) for l in ls: core.transform(l.get_as_xyz(), T) drms = atom.get_drms(xyzs1, xyzs2) rb_drms = atom.get_rigid_bodies_drms(xyzs1, xyzs2, ranges) self.assertAlmostEqual(drms, rb_drms, delta=0.3, msg="rb_drms != drms")
def test_docking_multiple_crosslinks(self): """ Test the initial docking that is done based on minimizing the distances of the cross-linking restraints """ mydock = bx.InitialDockingFromXlinks() xl = self.xlinks.get_xlinks_for_pair(("3sfdC", "3sfdD")) mydock.set_xlinks(xl) model = IMP.kernel.Model() fn_receptor = self.get_input_file_name("3sfdC.pdb") h_receptor = atom.read_pdb(fn_receptor, model, atom.NonWaterNonHydrogenPDBSelector()) fn_ligand = self.get_input_file_name("3sfdD.pdb") h_ligand = atom.read_pdb(fn_ligand, model, atom.NonWaterNonHydrogenPDBSelector()) mydock.set_hierarchies(h_receptor, h_ligand) p = IMP.kernel.Particle(model) core.RigidBody.setup_particle(p, atom.get_leaves(h_receptor)) rb_receptor = core.RigidBody(p) p = IMP.kernel.Particle(model) core.RigidBody.setup_particle(p, atom.get_leaves(h_ligand)) rb_ligand = core.RigidBody(p) mydock.set_rigid_bodies(rb_receptor, rb_ligand) mydock.move_ligand() for res1, res2 in zip([9, 78], [37, 128]): c1 = mydock.get_residue_coordinates(h_receptor, "C", res1) c2 = mydock.get_residue_coordinates(h_ligand, "D", res2) dist = alg.get_distance(c1, c2) self.assertLessEqual(dist, self.max_distance + 4.0)
def get_native_model_info(fn_pdb1): """ Fills the information for the native structure """ model_info = ModelInfo() sel = atom.ATOMPDBSelector() m1 = IMP.Model() hierarchy1 = atom.read_pdb(fn_pdb1, m1, sel) sel = atom.CAlphaPDBSelector() malphas1 = IMP.Model() alphas1 = atom.read_pdb(fn_pdb1, malphas1, sel) axyzs1 = [core.XYZ(l) for l in atom.get_leaves(alphas1)] model_info.rmsd_calpha = 0.0 model_info.drms_alpha = 0.0 model_info.rmsd = 0.0 model_info.nat_over = 100. xyzs1 = [core.XYZ(l) for l in atom.get_leaves(hierarchy1)] model_info.radius_g = atom.get_radius_of_gyration(xyzs1) h_chains1 = atom.get_by_type(hierarchy1, atom.CHAIN_TYPE) for hc1 in h_chains1: ch1 = atom.Chain(hc1) chain_info = ChainInfo() chain_info.chain_id = ch1.get_id() chain_info.placement_distance = 0.0 chain_info.placement_angle = 0.0 chain_info.rmsd = 0.0 native_overlap_threshold = 10 chain_info.nat_over = 0.0 chain_info.model_id = -1 model_info.chains_infos.append(chain_info) model_info.model_id = -1 return model_info
def test_component_placement_score(self): """Testing that component placement score returns the same transformation if called twice""" m = IMP.Model() # read PDB mp1_ref = atom.read_pdb(self.open_input_file("1z5s_A.pdb"), m, atom.NonWaterPDBSelector()) mp1_mdl = atom.read_pdb(self.open_input_file("1z5s_A.pdb"), m, atom.NonWaterPDBSelector()) mp2_ref = atom.read_pdb(self.open_input_file("1z5s_C.pdb"), m, atom.NonWaterPDBSelector()) mp2_mdl = atom.read_pdb(self.open_input_file("1z5s_C.pdb"), m, atom.NonWaterPDBSelector()) xyz1_ref = core.XYZs(atom.get_leaves(mp1_ref)) xyz1_mdl = core.XYZs(atom.get_leaves(mp1_mdl)) xyz2_ref = core.XYZs(atom.get_leaves(mp2_ref)) xyz2_mdl = core.XYZs(atom.get_leaves(mp2_mdl)) # create a random transformation t = IMP.algebra.Transformation3D(IMP.algebra.get_random_rotation_3d(), IMP.algebra.get_random_vector_in(IMP.algebra.get_unit_bounding_box_3d())) for d in xyz1_mdl: core.transform(d, t) t = IMP.algebra.Transformation3D(IMP.algebra.get_random_rotation_3d(), IMP.algebra.get_random_vector_in(IMP.algebra.get_unit_bounding_box_3d())) # core.get_transformed(xyz2_mdl,t) for d in xyz2_mdl: core.transform(d, t) da1 = atom.get_component_placement_score( xyz1_ref, xyz2_ref, xyz1_mdl, xyz2_mdl) da2 = atom.get_component_placement_score( xyz1_ref, xyz2_ref, xyz1_mdl, xyz2_mdl) self.assertAlmostEqual(da1[1], da2[1])
def test_drms(self): """ Test drms measure """ m = IMP.Model() sel = atom.CAlphaPDBSelector() prot1 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) prot2 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) xyzs1 = core.XYZs(atom.get_leaves(prot1)) xyzs2 = core.XYZs(atom.get_leaves(prot2)) drms = atom.get_drms(xyzs1, xyzs2) # Molecule with itself self.assertAlmostEqual(drms, 0) R = IMP.algebra.get_random_rotation_3d() v = IMP.algebra.get_random_vector_in( IMP.algebra.get_unit_bounding_box_3d()) T = IMP.algebra.Transformation3D(R, v) for x in xyzs2: core.transform(x, T) drms = atom.get_drms(xyzs1, xyzs2) # Same thing after transformation self.assertAlmostEqual(drms, 0) # for x in xyzs2: R = IMP.algebra.get_random_rotation_3d() T = IMP.algebra.Transformation3D(R, v) core.transform(x, T) drms = atom.get_drms(xyzs1, xyzs2) self.assertTrue(drms > 0)
def test_rigid_body_image_fit_restraint(self): """Test scoring with RigidBodiesImageFitRestraint""" m = IMP.Model() # read full complex fn = self.get_input_file_name("1z5s.pdb") prot = atom.read_pdb(fn, m, IMP.atom.ATOMPDBSelector()) # read components names = ["1z5sA", "1z5sB", "1z5sC", "1z5sD"] fn_pdbs = [self.get_input_file_name(name + ".pdb") for name in names] components = [atom.read_pdb(fn, m, IMP.atom.ATOMPDBSelector()) for fn in fn_pdbs] components_rbs = [atom.create_rigid_body(c) for c in components] # img R = alg.get_identity_rotation_3d() reg = em2d.RegistrationResult(R) img = em2d.Image() img.set_size(80, 80) srw = em2d.SpiderImageReaderWriter() resolution = 5 pixel_size = 1.5 options = em2d.ProjectingOptions(pixel_size, resolution) ls = core.get_leaves(prot) em2d.get_projection(img, ls, reg, options) # img.write("rbfit_test_image.spi",srw) # set restraint score_function = em2d.EM2DScore() rb_fit = em2d.RigidBodiesImageFitRestraint(score_function, components_rbs, img) pp = em2d.ProjectingParameters(pixel_size, resolution) rb_fit.set_projecting_parameters(pp) # set the trivial case: n_masks = 1 for rb in components_rbs: # set as the only possible orientation the one that the rigid # body already has rb_fit.set_orientations(rb, [rb.get_reference_frame().get_transformation_to().get_rotation()]) self.assertEqual(rb_fit.get_number_of_masks(rb), n_masks, "Incorrect number rigid body masks") # Calculate the positions of the rigid bodies respect to the centroid # of the entire molecule ls = core.get_leaves(prot) xyzs = core.XYZs(ls) centroid = core.get_centroid(xyzs) coords = [rb.get_coordinates() - centroid for rb in components_rbs] for rb, coord in zip(components_rbs, coords): rb.set_coordinates(coord) # Check that the value is a perfect registration score = rb_fit.evaluate(False) # print "score ...", score # It seems that projecting with the masks is slightly less accurate # I have to establish a tolerance of 0.03 self.assertAlmostEqual(score, 0, delta=0.03, msg="Wrong value for the score %f " % (score))
def test_relative_position_mover(self, ): """ Test the RelativePositionMover """ log.info("test RelativePositionMover") fn_rec1 = self.get_input_file_name("1suvA_xlinked.pdb") fn_rec2 = self.get_input_file_name("1suvC_xlinked.pdb") fn_lig = self.get_input_file_name("1suvE_xlinked.pdb") fn_tr1 = \ self.get_input_file_name("transforms-1suvA-1suvE_reduced.txt") fn_tr2 = \ self.get_input_file_name("transforms-1suvC-1suvE_filtered.txt") m = IMP.kernel.Model() sel = atom.ATOMPDBSelector() h_rec1 = atom.read_pdb(fn_rec1, m, sel) rb_rec1 = atom.create_rigid_body(h_rec1) rec1_coords = [core.XYZ(l).get_coordinates() for l in atom.get_leaves(h_rec1)] h_rec2 = atom.read_pdb(fn_rec2, m, sel) rb_rec2 = atom.create_rigid_body(h_rec2) rec2_coords = [core.XYZ(l).get_coordinates() for l in atom.get_leaves(h_rec2)] h_ligand = atom.read_pdb(fn_lig, m, sel) rb_lig = atom.create_rigid_body(h_ligand) Ts = get_relative_transforms(fn_tr1) Tis1 = [] for i, T in enumerate(Ts): V = get_internal_transform3(T, rb_rec1, rb_lig) Tis1.append(V) docked_refs1 = get_docked_reference_frames(Ts, rb_lig) Ts = get_relative_transforms(fn_tr2) Tis2 = [] for i, T in enumerate(Ts): V = get_internal_transform3(T, rb_rec2, rb_lig) Tis2.append(V) docked_refs2 = get_docked_reference_frames(Ts, rb_lig) mv = em2d.RelativePositionMover(rb_lig, 10, 20) mv.add_internal_transformations(rb_rec1, Tis1) mv.add_internal_transformations(rb_rec2, Tis2) for i in range(2): # prob_random = 0 ref_before = rb_lig.get_reference_frame() ps = mv.propose() # _move(prob_random) ref_after = rb_lig.get_reference_frame() found = False current_coords = [core.XYZ(l).get_coordinates() for l in atom.get_leaves(h_ligand)] # check all possible reference frames where the ligand could be for r in itertools.chain(docked_refs1, docked_refs2): rb_lig.set_reference_frame(r) docked_coords = [core.XYZ(l).get_coordinates() for l in atom.get_leaves(h_ligand)] rmsd = alg.get_rmsd(current_coords, docked_coords) if rmsd < 0.1: found = True self.assertTrue(found, msg="the proposed move is not " "in the relative solutions") mv.accept()
def test_drms(self): """ Test drms measure """ m = IMP.kernel.Model() sel = atom.CAlphaPDBSelector() prot1 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) prot2 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) xyzs1 = core.XYZs(atom.get_leaves(prot1)) xyzs2 = core.XYZs(atom.get_leaves(prot2)) drms = atom.get_drms(xyzs1, xyzs2) # Molecule with itself self.assertAlmostEqual(drms, 0) R = IMP.algebra.get_random_rotation_3d() v = IMP.algebra.get_random_vector_in( IMP.algebra.get_unit_bounding_box_3d()) T = IMP.algebra.Transformation3D(R, v) for x in xyzs2: core.transform(x, T) drms = atom.get_drms(xyzs1, xyzs2) # Same thing after transformation self.assertAlmostEqual(drms, 0) # for x in xyzs2: R = IMP.algebra.get_random_rotation_3d() T = IMP.algebra.Transformation3D(R, v) core.transform(x, T) drms = atom.get_drms(xyzs1, xyzs2) self.assertTrue(drms > 0)
def test_docking_one_crosslink(self): """ Test the initial docking that is done based on minimizing the distances of the cross-linking restraints """ mydock = bx.InitialDockingFromXlinks() xl = self.xlinks.get_xlinks_for_pair(("3sfdB", "3sfdA")) mydock.set_xlinks(xl) self.assertEqual(len(mydock.xlinks_list), 1) mydock.clear_xlinks() self.assertEqual(len(mydock.xlinks_list), 0) model = IMP.kernel.Model() fn_receptor = self.get_input_file_name("3sfdB.pdb") h_receptor = atom.read_pdb(fn_receptor, model, atom.NonWaterNonHydrogenPDBSelector()) fn_ligand = self.get_input_file_name("3sfdA.pdb") h_ligand = atom.read_pdb(fn_ligand, model, atom.NonWaterNonHydrogenPDBSelector()) mydock.set_xlinks(xl) mydock.set_hierarchies(h_receptor, h_ligand) p = IMP.kernel.Particle(model) core.RigidBody.setup_particle(p, atom.get_leaves(h_receptor)) rb_receptor = core.RigidBody(p) p = IMP.kernel.Particle(model) core.RigidBody.setup_particle(p, atom.get_leaves(h_ligand)) rb_ligand = core.RigidBody(p) mydock.set_rigid_bodies(rb_receptor, rb_ligand) mydock.move_ligand() c1 = mydock.get_residue_coordinates(h_ligand, "A", 456) c2 = mydock.get_residue_coordinates(h_receptor, "B", 23) dist = alg.get_distance(c1, c2) self.assertLessEqual(dist, self.max_distance)
def set_pdbs(self, fn_receptor, fn_ligand): """ Set the name of the PDB files of the receptor and the ligand @param fn_receptor @param fn_ligand """ sel = atom.ATOMPDBSelector() self.m_receptor = IMP.Model() self.h_receptor = atom.read_pdb(fn_receptor, self.m_receptor, sel) self.m_ligand = IMP.Model() self.h_ligand = atom.read_pdb(fn_ligand, self.m_ligand, sel)
def set_pdbs(self, fn_receptor, fn_ligand): """ Set the name of the PDB files of the receptor and the ligand @param fn_receptor @param fn_ligand """ sel = atom.ATOMPDBSelector() self.m_receptor = IMP.kernel.Model() self.h_receptor = atom.read_pdb(fn_receptor, self.m_receptor, sel) self.m_ligand = IMP.kernel.Model() self.h_ligand = atom.read_pdb(fn_ligand, self.m_ligand, sel)
def test_filter_transformations(self): """ Check if the filtered conformation are the conformations that I computed before """ try: import subprocess import IMP.em2d.buildxlinks as bx except ImportError as e: self.skipTest(str(e)) dock = self.import_python_application('emagefit_dock') sel = atom.NonWaterNonHydrogenPDBSelector() ligand = IMP.kernel.Model() fn_ligand = self.get_input_file_name("3sfdB-3sfdA_initial_docking.pdb") h_ligand = atom.read_pdb(fn_ligand, ligand, sel) rb_ligand = atom.create_rigid_body(h_ligand) receptor = IMP.kernel.Model() fn_receptor = self.get_input_file_name("3sfdB.pdb") h_receptor = atom.read_pdb(fn_receptor, receptor, sel) # read_hex_transformations fn = self.get_input_file_name("hex_solutions_3sfdB-3sfdA.txt") residue_receptor = 23 residue_ligand = 456 distance = 30 xl = bx.Xlink("3sfdB", "B", residue_receptor, "3sfdA", "A", residue_ligand, distance) xlinks_list = [xl] fn_filtered = "filtered_transforms.txt" dock.filter_docking_results(h_receptor, h_ligand, xlinks_list, fn, fn_filtered) fn_stored = self.get_input_file_name( "hex_solutions_3sfdB-3sfdA_filtered.txt") filtered = dock.read_hex_transforms(fn_filtered) stored = dock.read_hex_transforms(fn_stored) # check that the filtered transforms match the stored ones self.assertEqual(len(filtered), len(stored)) for Tf, Ts in zip(filtered, stored): tf = Tf.get_translation() ts = Ts.get_translation() qf = Tf.get_rotation().get_quaternion() qs = Ts.get_rotation().get_quaternion() for k in range(3): self.assertAlmostEqual(tf[k], ts[k]) for k in range(4): self.assertAlmostEqual(qf[k], qs[k]) os.remove(fn_filtered)
def test_filter_transformations(self): """ Check if the filtered conformation are the conformations that I computed before """ try: import subprocess import IMP.EMageFit.buildxlinks as bx except ImportError as e: self.skipTest(str(e)) dock = self.import_python_application('emagefit_dock') sel = atom.NonWaterNonHydrogenPDBSelector() ligand = IMP.Model() fn_ligand = self.get_input_file_name("3sfdB-3sfdA_initial_docking.pdb") h_ligand = atom.read_pdb(fn_ligand, ligand, sel) rb_ligand = atom.create_rigid_body(h_ligand) receptor = IMP.Model() fn_receptor = self.get_input_file_name("3sfdB.pdb") h_receptor = atom.read_pdb(fn_receptor, receptor, sel) # read_hex_transformations fn = self.get_input_file_name("hex_solutions_3sfdB-3sfdA.txt") residue_receptor = 23 residue_ligand = 456 distance = 30 xl = bx.Xlink("3sfdB", "B", residue_receptor, "3sfdA", "A", residue_ligand, distance) xlinks_list = [xl] fn_filtered = "filtered_transforms.txt" dock.filter_docking_results(h_receptor, h_ligand, xlinks_list, fn, fn_filtered) fn_stored = self.get_input_file_name( "hex_solutions_3sfdB-3sfdA_filtered.txt") filtered = dock.read_hex_transforms(fn_filtered) stored = dock.read_hex_transforms(fn_stored) # check that the filtered transforms match the stored ones self.assertEqual(len(filtered), len(stored)) for Tf, Ts in zip(filtered, stored): tf = Tf.get_translation() ts = Ts.get_translation() qf = Tf.get_rotation().get_quaternion() qs = Ts.get_rotation().get_quaternion() for k in range(3): self.assertAlmostEqual(tf[k], ts[k]) for k in range(4): self.assertAlmostEqual(qf[k], qs[k]) os.remove(fn_filtered)
def test_ccs_value(self): """Test the calculation of the collision cross section of a complex""" IMP.base.set_log_level(IMP.base.TERSE) m = IMP.kernel.Model() fn = self.get_input_file_name("1z5s.pdb") prot = atom.read_pdb(fn, m, atom.ATOMPDBSelector()) atom.add_radii(prot) projections = 20 resolution = 1.0 pixel_size = 1.5 img_size = 80 ccs = em2d.CollisionCrossSection( projections, resolution, pixel_size, img_size) ccs.set_model_particles(IMP.atom.get_leaves(prot)) ccs_calculated = ccs.get_ccs() ccs_value = 3838 # A**2 # good within 2% self.assertAlmostEqual( ccs_calculated, ccs_value, delta=ccs_value * 0.02)
def test_placement_score(self): """Test placement score""" m = IMP.Model() # read PDB mp= atom.read_pdb(self.open_input_file("mini.pdb"), m, atom.NonWaterPDBSelector()) mp1= atom.read_pdb(self.open_input_file("mini.pdb"), m, atom.NonWaterPDBSelector()) xyz=core.XYZs(atom.get_leaves(mp)) xyz1=core.XYZs(atom.get_leaves(mp1)) #create a random transformation t=IMP.algebra.Transformation3D(IMP.algebra.get_random_rotation_3d(), IMP.algebra.get_random_vector_in(IMP.algebra.get_unit_bounding_box_3d())) for d in xyz1: core.transform(d,t) da=atom.get_placement_score(xyz1,xyz) d=t.get_translation().get_magnitude() a=IMP.algebra.get_axis_and_angle(t.get_rotation()).second self.assertAlmostEqual(da[0],d, 2) self.assertAlmostEqual(da[1],a, 2)
def read_component(model,fn_pdb, name=False): """ Read a PDB molecule, add atoms, and set a name """ log.debug("reading component %s from %s", name, fn_pdb) hierarchy = atom.read_pdb(fn_pdb, model, atom.NonWaterNonHydrogenPDBSelector()) if(name): hierarchy.set_name(name) atom.add_radii(hierarchy) return hierarchy
def test__rigid_bodies_drmsd_Q(self): """ Test drmsd_Q measure""" m = IMP.kernel.Model() sel = atom.CAlphaPDBSelector() prot1 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) prot2 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) xyzs1 = core.XYZs(atom.get_leaves(prot1)) xyzs2 = core.XYZs(atom.get_leaves(prot2)) R = IMP.algebra.get_random_rotation_3d() v = IMP.algebra.get_random_vector_in( IMP.algebra.get_unit_bounding_box_3d()) T = IMP.algebra.Transformation3D(R, v) for x in xyzs2: core.transform(x, T) thresholds = [10, 20, 30, 40, 60] for threshold in thresholds: # for x in xyzs2: R = IMP.algebra.get_random_rotation_3d() T = IMP.algebra.Transformation3D(R, v) core.transform(x, T) # test that the function is correctly implemented drmsd = 0. npairs = 0. for i in range(0, len(xyzs1) - 1): for j in range(i + 1, len(xyzs2)): dist0 = IMP.core.get_distance(xyzs1[i], xyzs1[j]) dist1 = IMP.core.get_distance(xyzs2[i], xyzs2[j]) if dist0 <= threshold or dist1 <= threshold: drmsd += (dist0 - dist1) ** 2 npairs += 1. drmsd = math.sqrt(drmsd / npairs) drmsd_target = atom.get_drmsd_Q(xyzs1, xyzs2, threshold) self.assertAlmostEqual(drmsd, drmsd_target) drmsd_Q = atom.get_drmsd_Q(xyzs1, xyzs2, 1000000.0) drmsd = atom.get_drmsd(xyzs1, xyzs2) self.assertAlmostEqual(drmsd, drmsd_Q)
def test__rigid_bodies_drmsd_Q(self): """ Test drmsd_Q measure""" m = IMP.Model() sel = atom.CAlphaPDBSelector() prot1 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) prot2 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) xyzs1 = core.XYZs(atom.get_leaves(prot1)) xyzs2 = core.XYZs(atom.get_leaves(prot2)) R = IMP.algebra.get_random_rotation_3d() v = IMP.algebra.get_random_vector_in( IMP.algebra.get_unit_bounding_box_3d()) T = IMP.algebra.Transformation3D(R, v) for x in xyzs2: core.transform(x, T) thresholds = [10, 20, 30, 40, 60] for threshold in thresholds: # for x in xyzs2: R = IMP.algebra.get_random_rotation_3d() T = IMP.algebra.Transformation3D(R, v) core.transform(x, T) # test that the function is correctly implemented drmsd = 0. npairs = 0. for i in range(0, len(xyzs1) - 1): for j in range(i + 1, len(xyzs2)): dist0 = IMP.core.get_distance(xyzs1[i], xyzs1[j]) dist1 = IMP.core.get_distance(xyzs2[i], xyzs2[j]) if dist0 <= threshold or dist1 <= threshold: drmsd += (dist0 - dist1)**2 npairs += 1. drmsd = math.sqrt(drmsd / npairs) drmsd_target = atom.get_drmsd_Q(xyzs1, xyzs2, threshold) self.assertAlmostEqual(drmsd, drmsd_target) drmsd_Q = atom.get_drmsd_Q(xyzs1, xyzs2, 1000000.0) drmsd = atom.get_drmsd(xyzs1, xyzs2) self.assertAlmostEqual(drmsd, drmsd_Q)
def test_placement_score(self): """Test placement score""" m = IMP.kernel.Model() # read PDB mp = atom.read_pdb(self.open_input_file("mini.pdb"), m, atom.NonWaterPDBSelector()) mp1 = atom.read_pdb(self.open_input_file("mini.pdb"), m, atom.NonWaterPDBSelector()) xyz = core.XYZs(atom.get_leaves(mp)) xyz1 = core.XYZs(atom.get_leaves(mp1)) # create a random transformation t = IMP.algebra.Transformation3D(IMP.algebra.get_random_rotation_3d(), IMP.algebra.get_random_vector_in(IMP.algebra.get_unit_bounding_box_3d())) for d in xyz1: core.transform(d, t) da = atom.get_placement_score(xyz1, xyz) d = t.get_translation().get_magnitude() a = IMP.algebra.get_axis_and_angle(t.get_rotation()).second self.assertAlmostEqual(da[0], d, 2) self.assertAlmostEqual(da[1], a, 2)
def test__rigid_bodies_drmsd(self): """ Test drmsd measure""" m = IMP.kernel.Model() sel = atom.CAlphaPDBSelector() prot1 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) prot2 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) xyzs1 = core.XYZs(atom.get_leaves(prot1)) xyzs2 = core.XYZs(atom.get_leaves(prot2)) drmsd = atom.get_drmsd(xyzs1, xyzs2) # Molecule with itself self.assertAlmostEqual(drmsd, 0) R = IMP.algebra.get_random_rotation_3d() v = IMP.algebra.get_random_vector_in( IMP.algebra.get_unit_bounding_box_3d()) T = IMP.algebra.Transformation3D(R, v) for x in xyzs2: core.transform(x, T) drmsd = atom.get_drmsd(xyzs1, xyzs2) # Same thing after transformation self.assertAlmostEqual(drmsd, 0) # for x in xyzs2: R = IMP.algebra.get_random_rotation_3d() T = IMP.algebra.Transformation3D(R, v) core.transform(x, T) # test that the function is correctly implemented drmsd = 0. npairs = 0. for i in range(0, len(xyzs1) - 1): for j in range(i + 1, len(xyzs2)): dist0 = IMP.core.get_distance(xyzs1[i], xyzs1[j]) dist1 = IMP.core.get_distance(xyzs2[i], xyzs2[j]) drmsd += (dist0 - dist1) ** 2 npairs += 1. drmsd1 = math.sqrt(drmsd / npairs) drmsd2 = atom.get_drmsd(xyzs1, xyzs2) self.assertAlmostEqual(drmsd1, drmsd2)
def test__rigid_bodies_drmsd(self): """ Test drmsd measure""" m = IMP.Model() sel = atom.CAlphaPDBSelector() prot1 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) prot2 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) xyzs1 = core.XYZs(atom.get_leaves(prot1)) xyzs2 = core.XYZs(atom.get_leaves(prot2)) drmsd = atom.get_drmsd(xyzs1, xyzs2) # Molecule with itself self.assertAlmostEqual(drmsd, 0) R = IMP.algebra.get_random_rotation_3d() v = IMP.algebra.get_random_vector_in( IMP.algebra.get_unit_bounding_box_3d()) T = IMP.algebra.Transformation3D(R, v) for x in xyzs2: core.transform(x, T) drmsd = atom.get_drmsd(xyzs1, xyzs2) # Same thing after transformation self.assertAlmostEqual(drmsd, 0) # for x in xyzs2: R = IMP.algebra.get_random_rotation_3d() T = IMP.algebra.Transformation3D(R, v) core.transform(x, T) # test that the function is correctly implemented drmsd = 0. npairs = 0. for i in range(0, len(xyzs1) - 1): for j in range(i + 1, len(xyzs2)): dist0 = IMP.core.get_distance(xyzs1[i], xyzs1[j]) dist1 = IMP.core.get_distance(xyzs2[i], xyzs2[j]) drmsd += (dist0 - dist1)**2 npairs += 1. drmsd1 = math.sqrt(drmsd / npairs) drmsd2 = atom.get_drmsd(xyzs1, xyzs2) self.assertAlmostEqual(drmsd1, drmsd2)
def read_component(model, fn_pdb, name=False): """ Read a PDB molecule, add atoms, and set a name """ if name: log.debug("reading component %s from %s", name, fn_pdb) else: log.debug("reading component from %s", fn_pdb) hierarchy = atom.read_pdb(fn_pdb, model, atom.NonWaterNonHydrogenPDBSelector()) if name: hierarchy.set_name(name) atom.add_radii(hierarchy) return hierarchy
def test__rigid_bodies_drms(self): """ Test drms measure taking into account rigid bodies""" m = IMP.kernel.Model() sel = atom.CAlphaPDBSelector() prot1 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) prot2 = atom.read_pdb(self.open_input_file("mini.pdb"), m, sel) hchains1 = atom.get_by_type(prot1, atom.CHAIN_TYPE) hchains2 = atom.get_by_type(prot2, atom.CHAIN_TYPE) xyzs1 = core.XYZs(atom.get_leaves(prot1)) xyzs2 = core.XYZs(atom.get_leaves(prot2)) x = 0 ranges = [] for h in hchains1: ls1 = (atom.get_leaves(h)) y = x + len(ls1) ranges.append((x, y)) x = y drms = atom.get_drms(xyzs1, xyzs2) rb_drms = atom.get_rigid_bodies_drms(xyzs1, xyzs2, ranges) self.assertAlmostEqual(rb_drms, 0) self.assertAlmostEqual( drms, rb_drms, delta=1e-3, msg="rb_drms != drms") # Same thing after transformation of each of the chains for h in hchains2: R = alg.get_random_rotation_3d() v = alg.get_random_vector_in(alg.get_unit_bounding_box_3d()) T = alg.Transformation3D(R, v) ls = atom.get_leaves(h) for l in ls: core.transform(l.get_as_xyz(), T) drms = atom.get_drms(xyzs1, xyzs2) rb_drms = atom.get_rigid_bodies_drms(xyzs1, xyzs2, ranges) self.assertAlmostEqual(drms, rb_drms, delta=0.3, msg="rb_drms != drms")
def test_ccs_value(self): """Test the calculation of the collision cross section of a complex""" IMP.set_log_level(IMP.TERSE) m = IMP.Model() fn = self.get_input_file_name("1z5s.pdb") prot = atom.read_pdb(fn, m, atom.ATOMPDBSelector()) atom.add_radii(prot) projections = 20 resolution = 7.0 pixel_size = 1.5 img_size = 80 ccs = em2d.CollisionCrossSection(projections, resolution, pixel_size, img_size) ccs.set_model_particles(IMP.atom.get_leaves(prot)) ccs_calculated = ccs.get_ccs() ccs_value = 3838 # A**2 # good within 2% self.assertAlmostEqual(ccs_calculated, ccs_value, delta=ccs_value * 0.02)
help="File for logging ") args = parser.parse_args() if(not args.fn_receptor): parser.print_help() sys.exit() if(args.log): logging.basicConfig(filename=args.log, filemode="w") else: logging.basicConfig(stream=sys.stdout) logging.root.setLevel(logging.DEBUG) sel = atom.ATOMPDBSelector() m = IMP.Model() h_receptor = atom.read_pdb(args.fn_receptor, m, sel) rb_receptor = atom.create_rigid_body(h_receptor) h_ligand = atom.read_pdb(args.fn_ligand, m, sel) rb_ligand = atom.create_rigid_body(h_ligand) if args.dock: check_for_hexdock() if not args.fn_transforms or not args.fn_internal_transforms: raise IOError("Docking requires the --int and --hex arguments") hex_docking = HexDocking() hex_docking.dock(args.fn_receptor, args.fn_ligand, args.fn_transforms) # read the HEX file of solutions and get the internal transformations # giving the relative orientation of the ligand respect to the receptor Ts = read_hex_transforms(args.fn_transforms) rb_receptor = atom.create_rigid_body(h_receptor) Tis = [get_internal_transform(T, rb_receptor, rb_ligand) for T in Ts] io.write_transforms(Tis, args.fn_internal_transforms)
## \example em2d/collision_cross_section.py # Example of how to compute the collision cross section of a molecule. # import IMP import IMP.em2d as em2d import IMP.atom as atom """ Example of how to compute the collision cross section of a molecule """ IMP.base.set_log_level(IMP.base.TERSE) m = IMP.kernel.Model() fn = em2d.get_example_path("1z5s.pdb") prot = atom.read_pdb(fn, m, atom.ATOMPDBSelector()) atom.add_radii(prot) projections = 20 resolution = 1.0 pixel_size = 1.5 img_size = 80 ccs = em2d.CollisionCrossSection(projections, resolution, pixel_size, img_size) ccs.set_model_particles(IMP.atom.get_leaves(prot)) print "CCS", ccs.get_ccs(), "A**2"
def test_rigid_body_image_fit_restraint(self): """Test scoring with RigidBodiesImageFitRestraint""" m = IMP.kernel.Model() # read full complex fn = self.get_input_file_name("1z5s.pdb") prot = atom.read_pdb(fn, m, IMP.atom.ATOMPDBSelector()) # read components names = ["1z5sA", "1z5sB", "1z5sC", "1z5sD"] fn_pdbs = [self.get_input_file_name(name + ".pdb") for name in names] components = [ atom.read_pdb(fn, m, IMP.atom.ATOMPDBSelector()) for fn in fn_pdbs ] components_rbs = [atom.create_rigid_body(c) for c in components] # img R = alg.get_identity_rotation_3d() reg = em2d.RegistrationResult(R) img = em2d.Image() img.set_size(80, 80) srw = em2d.SpiderImageReaderWriter() resolution = 5 pixel_size = 1.5 options = em2d.ProjectingOptions(pixel_size, resolution) ls = core.get_leaves(prot) em2d.get_projection(img, ls, reg, options) # img.write("rbfit_test_image.spi",srw) # set restraint score_function = em2d.EM2DScore() rb_fit = em2d.RigidBodiesImageFitRestraint(score_function, components_rbs, img) pp = em2d.ProjectingParameters(pixel_size, resolution) rb_fit.set_projecting_parameters(pp) # set the trivial case: n_masks = 1 for rb in components_rbs: # set as the only possible orientation the one that the rigid # body already has rb_fit.set_orientations(rb, [ rb.get_reference_frame().get_transformation_to().get_rotation( ) ]) self.assertEqual(rb_fit.get_number_of_masks(rb), n_masks, "Incorrect number rigid body masks") # Calculate the positions of the rigid bodies respect to the centroid # of the entire molecule ls = core.get_leaves(prot) xyzs = core.XYZs(ls) centroid = core.get_centroid(xyzs) coords = [rb.get_coordinates() - centroid for rb in components_rbs] for rb, coord in zip(components_rbs, coords): rb.set_coordinates(coord) # Check that the value is a perfect registration m.add_restraint(rb_fit) score = rb_fit.evaluate(False) # print "score ...", score # It seems that projecting with the masks is slightly less accurate # I have to establish a tolerance of 0.03 self.assertAlmostEqual(score, 0, delta=0.03, msg="Wrong value for the score %f " % (score))
def score_model(complete_fn_model, images_sel_file, pixel_size, n_projections=20, resolution=1, images_per_batch=250): """ Score a model Scores a model against the images in the selection file. Reads the images in batchs to avoid memory problems resolution and pixel_size are used for generating projections of the model The finder is an em2d.ProjectionFinder used for projection matching and optimizations """ print "SCORING MODEL:",complete_fn_model cwd = os.getcwd() images_dir, nil = os.path.split(images_sel_file) images_names = em2d.read_selection_file(images_sel_file) n_images = len(images_names) if(n_images == 0): raise ValueError(" Scoring with a empty set of images") # TYPICAL OPTIMIZER PARAMETERS params = em2d.Em2DRestraintParameters(pixel_size, resolution) params.coarse_registration_method = em2d.ALIGN2D_PREPROCESSING params.optimization_steps = 4 params.simplex_initial_length = 0.1 params.simplex_minimum_size=0.02 params.save_match_images = True score_function = em2d.EM2DScore() finder = em2d.ProjectionFinder() finder.setup(score_function, params) # Get the number of rows and cols from the 1st image srw = em2d.SpiderImageReaderWriter() test_imgs = em2d.read_images([os.path.join(images_dir, images_names[0])], srw) rows = test_imgs[0].get_header().get_number_of_columns() cols = test_imgs[0].get_header().get_number_of_rows() model = IMP.Model() ssel = atom.ATOMPDBSelector() prot = atom.read_pdb(complete_fn_model, model, ssel) particles = IMP.core.get_leaves(prot) # generate projections proj_params = em2d.get_evenly_distributed_registration_results(n_projections) opts = em2d.ProjectingOptions(pixel_size, resolution) projections = em2d.get_projections(particles, proj_params, rows, cols, opts) finder.set_model_particles(particles) finder.set_projections(projections) optimized_solutions= 2 finder.set_fast_mode(optimized_solutions) # read the images in blocks to avoid memory problems all_registration_results = [] init_set = 0 init_time = time.time() while(init_set < n_images): end_set = min( init_set + images_per_batch, n_images ) if(images_dir != ""): os.chdir(images_dir) subjects = em2d.read_images(images_names[init_set:end_set], srw) # register finder.set_subjects(subjects) os.chdir(cwd) finder.get_complete_registration() # Recover the registration results: registration_results = finder.get_registration_results() for reg in registration_results: all_registration_results.append(reg) init_set += images_per_batch os.chdir(cwd) em2d.write_registration_results("registration.params", all_registration_results) print "score_model: time complete registration",time.time()-init_time print "coarse registration time",finder.get_coarse_registration_time() print "fine registration time",finder.get_fine_registration_time() return all_registration_results
#*************************** fn_selection = em2d.get_example_path("all-models-1z5s.sel") fn_em2d_scores = em2d.get_example_path("em2d_scores_for_clustering.data") # Load models print "Reading models ..." model = IMP.Model() ssel = atom.ATOMPDBSelector() coords =[] fn_models = em2d.read_selection_file(fn_selection) n_models = len(fn_models) hierarchies=[] for fn in fn_models: fn_model=em2d.get_example_path(fn) h=atom.read_pdb(fn_model,model,ssel,True) hierarchies.append(h) xyz=core.XYZs(atom.get_leaves(h)) coords.append( [x.get_coordinates() for x in xyz]) print "Computing matrix of RMSD ..." rmsds=[[0.0 for i in range(0,n_models)] for n in range(0,n_models)] transformations=[[[] for i in range(0,n_models)] for j in range(0,n_models)] # fill rmsd and transformations for i in xrange(0,n_models): for j in xrange(i+1,n_models): if(i!=j): t=IMP.algebra.get_transformation_aligning_first_to_second( coords[i], coords[j]) transformations[i][j]=t
## Example of how to compute the collision cross section of a molecule. ## import IMP import IMP.em2d as em2d import IMP.atom as atom """ Example of how to compute the collision cross section of a molecule """ IMP.base.set_log_level(IMP.base.TERSE) m = IMP.Model() fn = em2d.get_example_path("1z5s.pdb") prot = atom.read_pdb(fn, m ,atom.ATOMPDBSelector()) atom.add_radii(prot) projections = 20 resolution = 1.0 pixel_size = 1.5 img_size = 80 ccs = em2d.CollisionCrossSection(projections, resolution, pixel_size, img_size) ccs.set_model_particles(IMP.atom.get_leaves(prot)) print "CCS",ccs.get_ccs(),"A**2"
self.count=0 o=self.get_optimizer() m=o.get_model() m.show_restraint_score_statistics() m.show_all_statistics() #for i in range(0,m.get_number_of_restraints()): # r=m.get_restraint(i) # print "restraint",r.get_name(),"value",r.evaluate(False) def do_show(self, stream): print >> stream, ps # Get model from PDB file IMP.base.set_log_level(IMP.base.TERSE) m = IMP.Model() prot = atom.read_pdb(em2d.get_example_path("1z5s.pdb"),m,atom.ATOMPDBSelector()) atom.add_radii(prot) # get the chains chains = atom.get_by_type(prot,atom.CHAIN_TYPE) print "there are",len(chains),"chains in 1z5s.pdb" # set the chains as rigid bodies native_chain_centers = [] rigid_bodies= [] for c in chains: atoms=core.get_leaves(c) rbd=core.RigidBody.setup_particle(c,atoms) rigid_bodies.append(rbd) print "chain has",rbd.get_number_of_members(), \ "atoms","coordinates: ",rbd.get_coordinates()
def create_dockings_from_xlinks(exp): """ Perform dockings that satisfy the cross-linking restraints. 1) Based on the number of restraints, creates an order for the docking between pairs of subunits, favouring the subunits with more crosslinks to be the "receptors" 2) Moves the subunits that are going to be docked to a position that satisfies the x-linking restraints. There is no guarantee that this position is correct. Its purpose is to help the docking algorithm with a clue of the proximity/orientation between subunits 3) Performs docking between the subunits 4) Filters the results of the docking that are not consistent with the cross-linking restraints 5) Computes the relative transformations between the rigid bodies of the subunits that have been docked @param exp Class with the parameters for the experiment """ log.info("Creating initial assembly from xlinks and docking") import docking_related as dock import buildxlinks as bx m = DominoModel.DominoModel() m.set_assembly_components(exp.fn_pdbs, exp.names) set_xlink_restraints(exp, m) order = bx.DockOrder() order.set_xlinks(m.xlinks) docking_pairs = order.get_docking_order() if hasattr(exp, "have_hexdock"): if not exp.have_hexdock: return for rec, lig in docking_pairs: pair_xlinks = m.xlinks.get_xlinks_for_pair((rec,lig)) log.debug("Xlinks for the pair %s %s %s",rec, lig, pair_xlinks) h_receptor = representation.get_component(m.assembly, rec) h_ligand = representation.get_component(m.assembly, lig) rb_receptor = representation.get_rigid_body(m.components_rbs, representation.get_rb_name(rec)) rb_ligand = representation.get_rigid_body(m.components_rbs, representation.get_rb_name(lig)) initial_ref = rb_ligand.get_reference_frame() # move to the initial docking position mv = bx.InitialDockingFromXlinks() mv.set_xlinks(pair_xlinks) mv.set_hierarchies(h_receptor, h_ligand) mv.set_rigid_bodies(rb_receptor, rb_ligand) mv.move_ligand() fn_initial_docking = "%s-%s_initial_docking.pdb" % (rec,lig) mv.write_ligand(fn_initial_docking) # dock hex_docking = dock.HexDocking() receptor_index = exp.names.index(rec) fn_transforms = "hex_solutions_%s-%s.txt" % (rec, lig) fn_docked = "%s-%s_hexdock.pdb" % (rec, lig) hex_docking.dock(exp.fn_pdbs[receptor_index], fn_initial_docking, fn_transforms, fn_docked, False) sel = atom.ATOMPDBSelector() new_m = IMP.Model() # After reading the file with the initial solution, the reference frame # for the rigid body of the ligand is not necessarily the same one # that it had when saved. # Thus reading the file again ensures consisten results when # using the HEXDOCK transforms new_h_ligand = atom.read_pdb(fn_initial_docking, new_m, sel) new_rb_ligand = atom.create_rigid_body(new_h_ligand) Tlig = new_rb_ligand.get_reference_frame().get_transformation_to() fn_filtered = "hex_solutions_%s-%s_filtered.txt" % (rec, lig) # h_ligand contains the coordinates of the ligand after moving it # to the initial position for the docking dock.filter_docking_results(h_receptor, new_h_ligand, pair_xlinks, fn_transforms, fn_filtered) # transforms to apply to the ligand as it is in the file # fn_initial_docking Thex = dock.read_hex_transforms(fn_filtered) Trec = rb_receptor.get_reference_frame().get_transformation_to() Tinternal = [] for i,T in enumerate(Thex): Tdock = alg.compose(T, Tlig) ref = alg.ReferenceFrame3D(Tdock) new_rb_ligand.set_reference_frame(ref) # internal transformation. The relationship is Tdock = Trec * Ti Ti = alg.compose(Trec.get_inverse(), Tdock) Tinternal.append(Ti) fn_relative = "relative_positions_%s-%s.txt" % (rec, lig) io.write_transforms(Tinternal, fn_relative) rb_ligand.set_reference_frame(initial_ref)