示例#1
0
def classify_new_sounds(folder_of_test_sounds, target_class):
    new_descriptors = {target_class: load_description(folder_of_test_sounds)}
    new_normalized_features, new_y_class, new_features_names = preprocessDescriptors(new_descriptors)
    new_y_class = np.array([target_class]*len(new_y_class))
    descriptors = loadDescriptors(maximum='Inf', reverbs=True)
    normalized_features, yClass, features_names = preprocessDescriptors(descriptors)
    clf = trainSVM(normalized_features, yClass, call=True)
    F1 = F1Score(new_normalized_features, new_y_class, clf)

    return F1
示例#2
0
def classify_new_sounds(folder_of_test_sounds, target_class):
    new_descriptors = {target_class: load_description(folder_of_test_sounds)}
    new_normalized_features, new_y_class, new_features_names = preprocessDescriptors(
        new_descriptors)
    new_y_class = np.array([target_class] * len(new_y_class))
    descriptors = loadDescriptors(maximum='Inf', reverbs=True)
    normalized_features, yClass, features_names = preprocessDescriptors(
        descriptors)
    clf = trainSVM(normalized_features, yClass, call=True)
    F1 = F1Score(new_normalized_features, new_y_class, clf)

    return F1
示例#3
0
def run_stats_analysis(maximum='Inf', reverbs=True):
    Descriptors = loadDescriptors(maximum, reverbs)
    normalized_features, yClass, features_names = preprocessDescriptors(Descriptors)
    every_f1_test, mMean, mVar = test_repe(100, normalized_features, yClass)
    instrument_count = count_instruments(yClass)
    mean = mean_per_instrument(every_f1_test)
    stand = std_per_instrument(every_f1_test)

    return mean, stand, instrument_count
示例#4
0
def run_stats_analysis(maximum='Inf', reverbs=True):
    Descriptors = loadDescriptors(maximum, reverbs)
    normalized_features, yClass, features_names = preprocessDescriptors(
        Descriptors)
    every_f1_test, mMean, mVar = test_repe(100, normalized_features, yClass)
    instrument_count = count_instruments(yClass)
    mean = mean_per_instrument(every_f1_test)
    stand = std_per_instrument(every_f1_test)

    return mean, stand, instrument_count
示例#5
0
# -*- coding: utf-8 -*-

from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt

from utils.FScore import F1Score
from Identification.LoadDescriptors import loadAllDescriptors
from Identification.PreprocessingDescriptors import preprocessDescriptors
from Identification.TrainCvTest import separateDatabases

Descriptors = loadAllDescriptors(reverbs=True)
normalized_features, yClass, features_names = preprocessDescriptors(Descriptors)
del Descriptors  # Ya no lo voy a utilizar
normalizedTrain, yTrain, normalizedCV, yCV, normalizedTest, yTest = separateDatabases(normalized_features, yClass)


def test_data_size(training_features, training_classes, test_features, test_classes):
    index = np.arange(0, len(training_classes))
    np.random.shuffle(index)
    test_size = np.linspace(0.1, 1, 50) * len(index)
    test_size = [int(i) for i in test_size]
    f_train = []
    f_cv = []

    clf = svm.SVC(C=1.833, gamma=0.1366, cache_size=1000)

    for iii in test_size:
        clf.fit(training_features[index[0:iii]], training_classes[index[0:iii]])

        f_train = np.append(f_train, np.mean(F1Score(training_features[index[0:iii]],