from Image import ImageObject from Histogram import rgb_histogram path = "images/" image = ImageObject(path + "eu.png") image.load_image() #image.set_size(512, 512) sample_grid = int(input("Enter an even value for sample grid: ")) while sample_grid % 2 != 0: sample_grid = int(input("Enter an even value for sample grid: ")) level = int(input("Enter an even value for levels of RGB: ")) while level % 2 != 0: level = int(input("Enter an even value for levels of RGB: ")) image.discretize(sample_grid) image.quantize(level) rgb_histogram(image) image.save_image( path + f"color/color_quantize{level}_discretize{sample_grid}_cat.png") image.show_image()
from Image import ImageObject from Histogram import gray_histogram from copy import deepcopy import matplotlib.pylab as plt path = "images/" image = ImageObject(path + "greyscale.png") image.load_image() image.set_size(512, 512) image.set_image_to_gray() image.save_image(path + "pb.png") old_image = deepcopy(image) image.equalization() image.save_image(path + "equalization/equalization.png") old_image.show_image() gray_histogram(old_image, 'r') image.show_image() gray_histogram(image, 'gray') plt.show()
from Image import ImageObject from Histogram import gray_histogram from copy import deepcopy import matplotlib.pylab as plt path = "images/" image = ImageObject(path + "greyscale.png") image.load_image() image.set_size(512, 512) image.set_image_to_gray() image.save_image(path + "pb.png") old_image = deepcopy(image) image.stretch(0.001) image.save_image(path + "stretch/normal_stretch.png") image.show_image() gray_histogram(image, 'b') image.stretch(0.125) image.save_image(path + "stretch/stretch25.png") old_image.show_image() gray_histogram(old_image, 'r') image.show_image() gray_histogram(image, 'gray') plt.show()
from Image import ImageObject from Histogram import gray_histogram from copy import deepcopy import matplotlib.pylab as plt path = "images/" image = ImageObject(path + "greyscale.png") image.load_image() image.set_size(512, 512) image.set_image_to_gray() image.save_image(path + "pb.png") old_image = deepcopy(image) print("""What operation do you want to perform? 1.Sum 2.Subtraction 3.Multiplication 4.Division""") option = 0 while not int(option) in range(1, 5): option = int(input("")) highlight = float(input("Enter a highlight value: ")) if option == 1: image.linearSum(highlight) name = "linears/sum_h" image.save_image(path + name + f"{int(highlight)}.png") if option == 2: image.linearSub(highlight) name = "linears/sub_h" image.save_image(path + name + f"{int(highlight)}.png")
from Image import ImageObject import numpy as np path = "images/" image = ImageObject(path + "greyscale.png") image.load_image() image.set_size(512, 512) image.set_image_to_gray() image.save_image(path + "pb.png") weighted_average = [[1.5, 2.0, 2.5], [2.0, 4.0, 2.0], [1.5, 2.0, 1.5]] laplace = [[0.0, -1.0, 0.0], [-1.0, 4.0, -1.0], [0.0, -1.0, 0.0]] sharpen = [[-1.0, -1.0, -1.0], [-1.0, 9.0, -1.0], [-1.0, -1.0, -1.0]] border_detection = [[-1.0, -1.0, -1.0], [-1.0, 8.0, -1.0], [-1.0, -1.0, -1.0]] sobel_a = np.square([[-1.0, -2.0, -1.0], [0.0, 0.0, 0.0], [1.0, 2.0, 1.0]]) #primeira matriz elevada ao quadrado sobel_b = np.square([[-1.0, 0.0, -1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]]) #segunda matriz elevada ao quadrado final_sobel = np.sqrt( sobel_a + sobel_b) #resultado final é a raiz da soma das matrizes anteriores def saturate(value): if value > 255: return 255 if value < 0: return 0 return value
from Image import ImageObject from Histogram import gray_histogram path = "images/" image = ImageObject(path + "cat.png") image.load_image() image.set_size(512, 512) image.set_image_to_gray() image.save_image(path + "_pb.png") sample_grid = int(input("Enter an even value for sample grid: ")) while sample_grid % 2 != 0: sample_grid = int(input("Enter an even value for sample grid: ")) level = int(input("Enter an even value for levels of gray: ")) while level % 2 != 0: level = int(input("Enter an even value for levels of gray: ")) image.gray_discretize(sample_grid) image.gray_quantize(level) gray_histogram(image) image.save_image(path + f"/gray/gray_quantize{level}_discretize{sample_grid}_cat.png") image.show_image()
from Image import ImageObject from Histogram import gray_histogram from copy import deepcopy import matplotlib.pylab as plt path = "images/" image = ImageObject(path + "greyscale.png") image.load_image() image.set_size(512, 512) image.set_image_to_gray() image.save_image(path + "pb.png") old_image = deepcopy(image) image.transformation() image.save_image(path + "linears/transformed.png") old_image.show_image() gray_histogram(old_image, 'r') image.show_image() gray_histogram(image, 'gray') plt.show()