示例#1
0
    def __calcEigChan(self, A1, G2, Left, channels=10):
        # Calculate Eigenchannels using recipe from PRB
        # For right eigenchannels, A1=A2, G2=G1 !!!
        if isinstance(A1, MM.SpectralMatrix):
            ev, U = LA.eigh(MM.mm(A1.L, A1.R))
        else:
            ev, U = LA.eigh(A1)

        # This small trick will remove all zero contribution vectors
        # and will diagonalize the tt matrix in the subspace where there
        # are values.
        idx = (ev > 0).nonzero()[0]
        ev = N.sqrt(ev[idx] / (2 * N.pi))
        ev.shape = (1, -1)
        Utilde = ev * U[:, idx]

        nuo, nuoL, nuoR = self.nuo, self.nuoL, self.nuoR
        if Left:
            tt = MM.mm(MM.dagger(Utilde[nuo - nuoR:nuo, :]), 2 * N.pi * G2,
                       Utilde[nuo - nuoR:nuo, :])
        else:
            tt = MM.mm(MM.dagger(Utilde[:nuoL, :]), 2 * N.pi * G2,
                       Utilde[:nuoL, :])

        # Diagonalize (note that this is on a reduced tt matrix (no 0 contributing columns)
        evF, UF = LA.eigh(tt)
        EC = MM.mm(Utilde, UF[:, -channels:]).T
        return EC[::-1, :], evF[::-1]  # reverse eigenvalues
示例#2
0
def calcCurrent(options, basis, H, Y):
    """
    Calculate current density in atomic bonds
    Y : complex scattering state or
    Y : A_l or A_r! (for total current)
    """

    if isinstance(Y, MM.SpectralMatrix):
        Y = MM.mm(Y.L, Y.R)
    NN=len(H)
    NN2=options.DeviceAtoms[1]-options.DeviceAtoms[0]+1
    Curr=N.zeros((NN2, NN2), N.float)

    if len(Y.shape)==2:
        for ii in range(NN):
            a1=basis.ii[ii]-options.DeviceAtoms[0]
            for jj in range(NN):
                a2=basis.ii[jj]-options.DeviceAtoms[0]
                tmp=H[jj, ii]*Y[ii, jj]/2/N.pi
                # Note that taking the imaginary part is only the valid
                # expression for Gamma point calculations
                Curr[a1, a2]=Curr[a1, a2]+4*N.pi*tmp.imag
    else:
        for ii in range(NN):
            a1=basis.ii[ii]-options.DeviceAtoms[0]
            for jj in range(NN):
                a2=basis.ii[jj]-options.DeviceAtoms[0]
                tmp=H[ii, jj]*N.conjugate(Y[ii])*Y[jj]
                Curr[a1, a2]=Curr[a1, a2]+4*N.pi*tmp.imag

    return Curr
示例#3
0
    def orthogonalize(self):
        print 'NEGF.GF.orthogonalize: Orthogonalizing device region quantities'
        self.OrthogonalDeviceRegion = True
        self.HNO = self.H.copy()  # nonorthogonal device Hamiltonian (needed)

        # Device part
        Usi = MM.mysqrt(self.S)  # Folded S
        Us = LA.inv(Usi)
        # Store transformation matrices
        self.Usi, self.Us = Usi, Us

        # Transform S and H
        self.S, self.H = MM.mm(Us, self.S, Us), MM.mm(Us, self.H, Us)

        # Sigmas/Gammas in pyTBT GF can be smaller than device region
        # First give them the shape of the device region
        nnL, nnR = len(self.SigL), len(self.SigR)
        S1, S2 = N.zeros(self.H.shape,
                         N.complex), N.zeros(self.H.shape, N.complex)
        S1[0:nnL, 0:nnL], S2[-nnR:, -nnR:] = self.SigL, self.SigR
        # Resetting Sigmas to orthogonalized quantities
        self.SigL, self.SigR = MM.mm(Us, S1, Us), MM.mm(Us, S2, Us)
        # ... now the same for the Gammas
        G1, G2 = N.zeros(self.H.shape,
                         N.complex), N.zeros(self.H.shape, N.complex)
        G1[0:nnL, 0:nnL], G2[-nnR:, -nnR:] = self.GamL, self.GamR
        # Resetting Gammas to orthogonalized quantities
        self.GamL, self.GamR = MM.mm(Us, G1, Us), MM.mm(Us, G2, Us)

        # Orthogonalize Greens functions
        self.Gr = MM.mm(Usi, self.Gr, Usi)
        self.Ga = MM.dagger(self.Gr)
示例#4
0
 def calcTEIG(self, channels=10):
     # Transmission matrix (complex array)
     TT = self.TT
     Trans = N.trace(TT)
     VC.Check("trans-imaginary-part", Trans.imag,
              "Transmission has large imaginary part")
     # Calculate eigenchannel transmissions too
     tval, tvec = LA.eig(TT)
     idx = (tval.real).argsort()[::-1]  # sort from largest to smallest
     tval = tval[idx]
     tvec = tvec[:, idx]
     # Compute shot noise
     Smat = MM.mm(TT, N.identity(len(TT)) - TT)
     sval = N.diag(MM.mm(MM.dagger(tvec), Smat, tvec))
     # set up arrays
     T = N.zeros(channels + 1)
     SN = N.zeros(channels + 1)
     T[0] = Trans.real
     SN[0] = N.trace(Smat).real
     for i in range(min(channels, len(TT))):
         T[i + 1] = tval[i].real
         SN[i + 1] = sval[i].real
     return T, SN
示例#5
0
 def ComputeElectronStates(self, kpoint, verbose=True, TSrun=False):
     if TSrun:
         # kpoint has unit of '2*pi/a'
         kpt = kpoint / (2 * N.pi)
         kpt2 = MM.mm(N.array([self.Sym.a1, self.Sym.a2, self.Sym.a3]), kpt)
         self.TSHS0.setkpoint(kpt2, atype=N.complex, verbose=verbose)
         self.h0_k = self.TSHS0.H[:, :, :]
         self.s0_k = self.TSHS0.S[:, :]
     else:
         if verbose:
             print 'SupercellPhonons.ComputeElectronStates: k = ', kpoint, '(1/Ang)'
         # Fold onto primitive cell
         self.h0_k = self.Fold2PrimitiveCell(self.h0, kpoint)
         self.s0_k = self.Fold2PrimitiveCell(self.s0, kpoint)
     ev = N.empty((self.nspin, self.rednao), N.float)
     evec = N.empty((self.nspin, self.rednao, self.rednao), N.complex)
     for ispin in range(self.nspin):
         ev[ispin], evec[ispin] = SLA.eigh(self.h0_k[ispin], self.s0_k)
     return ev, evec
示例#6
0
    def calcg0(self, ee, ispin=0, left=True):
        # Calculate surface Green's function
        # Euro Phys J B 62, 381 (2008)
        # Inverse of : NOTE, setup for "right" lead.
        # e-h00 -h01  ...
        # -h10  e-h00 ...
        h00, s00, h01, s01 = self.H[ispin, :, :], self.S, self.H01[
            ispin, :, :], self.S01
        NN, ee = len(h00), N.real(ee) + N.max([N.imag(ee), 1e-8]) * 1.0j
        if left:
            h01, s01 = MM.dagger(h01), MM.dagger(s01)

        # Solve generalized eigen-problem
        # ( e I - h00 , -I) (eps)          (h01 , 0) (eps)
        # ( h10       ,  0) (xi ) = lambda (0   , I) (xi )
        a, b = N.zeros((2 * NN, 2 * NN), N.complex), N.zeros((2 * NN, 2 * NN),
                                                             N.complex)
        a[0:NN, 0:NN] = ee * s00 - h00
        a[0:NN, NN:2 * NN] = -N.eye(NN)
        a[NN:2 * NN, 0:NN] = MM.dagger(h01) - ee * MM.dagger(s01)
        b[0:NN, 0:NN] = h01 - ee * s01
        b[NN:2 * NN, NN:2 * NN] = N.eye(NN)
        ev, evec = SLA.eig(a, b)

        # Select lambda <0 and the eps part of the evec
        ipiv = N.where(N.abs(ev) < 1.0)[0]
        ev, evec = ev[ipiv], N.transpose(evec[:NN, ipiv])
        # Normalize evec
        norm = N.sqrt(N.diag(MM.mm(evec, MM.dagger(evec))))
        evec = MM.mm(N.diag(1.0 / norm), evec)

        # E^+ Lambda_+ (E^+)^-1 --->>> g00
        EP = N.transpose(evec)
        FP = MM.mm(EP, N.diag(ev), LA.inv(MM.mm(MM.dagger(EP), EP)),
                   MM.dagger(EP))
        g00 = LA.inv(ee * s00 - h00 - MM.mm(h01 - ee * s01, FP))

        # Check!
        err=N.max(N.abs(g00-LA.inv(ee*s00-h00-\
                         MM.mm(h01-ee*s01, g00, MM.dagger(h01)-ee*MM.dagger(s01)))))
        if err > 1.0e-8 and left:
            print "WARNING: Lopez-scheme not-so-well converged for LEFT electrode at E = %.4f eV:" % ee, err
        if err > 1.0e-8 and not left:
            print "WARNING: Lopez-scheme not-so-well converged for RIGHT electrode at E = %.4f eV:" % ee, err
        return g00
示例#7
0
def writeFGRrates(options, GF, hw, NCfile):
    print 'Inelastica.writeFGRrates: Computing FGR rates'
    # Eigenchannels
    GF.calcEigChan(channels=options.numchan)
    NCfile = NC4.Dataset(options.PhononNetCDF, 'r')
    print 'Reading ', options.PhononNetCDF

    outFile = file('%s/%s.IN.FGR' % (options.DestDir, options.systemlabel),
                   'w')
    outFile.write('Total transmission [in units of (1/s/eV)] : %e\n' %
                  (PC.unitConv * GF.TeF, ))

    for ihw in range(len(hw)):
        SIO.printDone(ihw, len(hw), 'Golden Rate')
        M = N.array(NCfile.variables['He_ph'][ihw, options.iSpin, :, :],
                    N.complex)
        try:
            M += 1.j * N.array(
                NCfile.variables['ImHe_ph'][ihw, options.iSpin, :, :],
                N.complex)
        except:
            print 'Warning: Variable ImHe_ph not found'
        rate = N.zeros((len(GF.ECleft), len(GF.ECright)), N.float)
        totrate = 0.0
        inter, intra = 0.0, 0.0  # splitting total rate in two
        for iL in range(len(GF.ECleft)):
            for iR in range(len(GF.ECright)):
                tmp = N.dot(N.conjugate(GF.ECleft[iL]),
                            MM.mm(M, GF.ECright[iR]))
                rate[iL, iR] = (2 * N.pi)**2 * abs(tmp)**2
                totrate += rate[iL, iR]
                if iL == iR: intra += rate[iL, iR]
                else: inter += rate[iL, iR]

        outFile.write(
            '\nPhonon mode %i : %f eV [Rates in units of (1/s/eV)]\n' %
            (ihw, hw[ihw]))
        outFile.write(
            'eh-damp : %e (1/s) , heating %e (1/(sV)))\n' %
            (GF.P1T[ihw] * PC.unitConv * hw[ihw], GF.P2T[ihw] * PC.unitConv))
        outFile.write(
            'eh-damp 1, 2 (MALMAL, MARMAR): %e (1/s) , %e (1/(s)))\n' %
            (GF.ehDampL[ihw] * PC.unitConv * hw[ihw],
             GF.ehDampR[ihw] * PC.unitConv * hw[ihw]))
        outFile.write('SymI : %e (1/(sV)) , AsymI %e (?))\n' %
                      (GF.nHT[ihw] * PC.unitConv, GF.HT[ihw] * PC.unitConv))
        #outFile.write('Elast : %e (1/(sV)) , Inelast %e (1/(sV)))\n' % (GF.nHTel[ihw]*PC.unitConv,GF.nHTin[ihw]*PC.unitConv))
        outFile.write('down=left EC, right=right EC\n')
        if GF.P2T[ihw] > 0.0:
            if abs(totrate / (GF.P2T[ihw]) - 1) < 0.05:
                outFile.write('Sum/Tr[MALMAR] , Tr: %1.3f  %e\n' %
                              (totrate /
                               (GF.P2T[ihw]), PC.unitConv * GF.P2T[ihw]))
            else:
                outFile.write(
                    'WARNING: !!!! Sum/Tr[MALMAR] , Tr: %2.2e  %e\n' %
                    (totrate / (GF.P2T[ihw]), PC.unitConv * GF.P2T[ihw]))
        else:
            outFile.write(' Tr:  %e\n' % (PC.unitConv * GF.P2T[ihw]))
        inter = inter / GF.P2T[ihw]
        intra = intra / GF.P2T[ihw]
        outFile.write(
            'Interchannel ratio: Sum(inter)/Tr[MALMAR]      = %.4f \n' % inter)
        outFile.write(
            'Intrachannel ratio: Sum(intra)/Tr[MALMAR]      = %.4f \n' % intra)
        outFile.write(
            'Inter+intra ratio: Sum(inter+intra)/Tr[MALMAR] = %.4f \n' %
            (inter + intra))
        for iL in range(len(GF.ECleft)):
            for iR in range(len(GF.ECright)):
                outFile.write('%e ' % (PC.unitConv * rate[iL, iR], ))
            outFile.write('\n')
    outFile.close()
示例#8
0
def calcTraces(options, GF1, GF2, basis, NCfile, ihw):
    # Calculate various traces over the electronic structure
    # Electron-phonon couplings
    ihw = int(ihw)
    M = N.array(NCfile.variables['He_ph'][ihw, options.iSpin, :, :], N.complex)
    try:
        M += 1.j * N.array(
            NCfile.variables['ImHe_ph'][ihw, options.iSpin, :, :], N.complex)
    except:
        print 'Warning: Variable ImHe_ph not found'
    # Calculation of intermediate quantity
    MARGLGM = MM.mm(M, GF1.ARGLG, M)
    MARGLGM2 = MM.mm(M, GF2.ARGLG, M)
    # LOE expressions in compact form
    t1 = MM.mm(MARGLGM, GF2.AR)
    t2 = MM.mm(MARGLGM2, GF1.AL)
    # Note that compared with Eq. (10) of PRB89, 081405 (2014) we here use
    # the definition B_lambda = MM.trace(t1-dagger(t2)), which in turn gives
    # ReB = MM.trace(t1).real-MM.trace(t2).real
    # ImB = MM.trace(t1).imag+MM.trace(t2).imag
    K23 = MM.trace(t1).imag + MM.trace(t2).imag
    K4 = MM.trace(MM.mm(M, GF1.ALT, M, GF2.AR))
    aK23 = 2 * (MM.trace(t1).real - MM.trace(t2).real)  # asymmetric part
    # Non-Hilbert term defined here with a minus sign
    GF1.nHT[ihw] = NEGF.AssertReal(K23 + K4, 'nHT[%i]' % ihw)
    GF1.HT[ihw] = NEGF.AssertReal(aK23, 'HT[%i]' % ihw)
    # Power, damping and current rates
    GF1.P1T[ihw] = NEGF.AssertReal(MM.trace(MM.mm(M, GF1.A, M, GF2.A)),
                                   'P1T[%i]' % ihw)
    GF1.P2T[ihw] = NEGF.AssertReal(MM.trace(MM.mm(M, GF1.AL, M, GF2.AR)),
                                   'P2T[%i]' % ihw)
    GF1.ehDampL[ihw] = NEGF.AssertReal(MM.trace(MM.mm(M, GF1.AL, M, GF2.AL)),
                                       'ehDampL[%i]' % ihw)
    GF1.ehDampR[ihw] = NEGF.AssertReal(MM.trace(MM.mm(M, GF1.AR, M, GF2.AR)),
                                       'ehDampR[%i]' % ihw)
    # Remains from older version (see before rev. 219):
    #GF.dGnout.append(EC.calcCurrent(options,basis,GF.HNO,mm(Us,-0.5j*(tmp1-dagger(tmp1)),Us)))
    #GF.dGnin.append(EC.calcCurrent(options,basis,GF.HNO,mm(Us,mm(G,MA1M,Gd)-0.5j*(tmp2-dagger(tmp2)),Us)))
    # NB: TF Should one use GF.HNO (nonorthogonal) or GF.H (orthogonalized) above?

    if options.LOEscale == 0.0:
        # Check against original LOE-WBA formulation
        isym1 = MM.mm(GF1.ALT, M, GF2.AR, M)
        isym2 = MM.mm(MM.dagger(GF1.ARGLG), M, GF2.A, M)
        isym3 = MM.mm(GF1.ARGLG, M, GF2.A, M)
        isym = MM.trace(isym1) + 1j / 2. * (MM.trace(isym2) - MM.trace(isym3))
        print 'LOE-WBA check: Isym diff', K23 + K4 - isym
        iasym1 = MM.mm(MM.dagger(GF1.ARGLG), M, GF2.AR - GF2.AL, M)
        iasym2 = MM.mm(GF1.ARGLG, M, GF2.AR - GF2.AL, M)
        iasym = MM.trace(iasym1) + MM.trace(iasym2)
        print 'LOE-WBA check: Iasym diff', aK23 - iasym

        # Compute inelastic shot noise terms according to the papers
        # Haupt, Novotny & Belzig, PRB 82, 165441 (2010) and
        # Avriller & Frederiksen, PRB 86, 155411 (2012)
        # Zero-temperature limit
        TT = MM.mm(GF1.GammaL,
                   GF1.AR)  # this matrix has the correct shape for MM
        ReGr = (GF1.Gr + GF1.Ga) / 2.
        tmp = MM.mm(GF1.Gr, M, ReGr, M, GF1.AR)
        tmp = tmp + MM.dagger(tmp)
        Tlambda0 = MM.mm(GF1.GammaL, tmp)
        tmp1 = MM.mm(M, GF1.AR, M)
        tmp2 = MM.mm(M, GF1.A, M, GF1.Gr, GF1.GammaR)
        tmp = tmp1 + 1j / 2. * (MM.dagger(tmp2) - tmp2)
        Tlambda1 = MM.mm(GF1.GammaL, GF1.Gr, tmp, GF1.Ga)
        MARGL = MM.mm(M, GF1.AR, GF1.GammaL)
        tmp1 = MM.mm(MARGL, GF1.AR, M)
        tmp2 = MM.mm(MARGL, GF1.Gr, M, GF1.Gr, GF1.GammaR)
        tmp = tmp1 + tmp2
        tmp = tmp + MM.dagger(tmp)
        Qlambda = MM.mm(-GF1.Ga, GF1.GammaL, GF1.Gr, tmp)
        tmp = -2 * TT
        OneMinusTwoT = tmp + N.identity(len(GF1.GammaL))
        # Store relevant traces
        GF1.dIel[ihw] = NEGF.AssertReal(MM.trace(Tlambda0), 'dIel[%i]' % ihw)
        GF1.dIinel[ihw] = NEGF.AssertReal(MM.trace(Tlambda1),
                                          'dIinel[%i]' % ihw)
        GF1.dSel[ihw] = NEGF.AssertReal(
            MM.trace(MM.mm(OneMinusTwoT, Tlambda0)), 'dSel[%i]' % ihw)
        GF1.dSinel[ihw] = NEGF.AssertReal(
            MM.trace(Qlambda + MM.mm(OneMinusTwoT, Tlambda1)),
            'dSinel[%i]' % ihw)
示例#9
0
def main(options):
    """
    Main routine to compute elastic transmission probabilities etc.

    Parameters
    ----------
    options : an ``options`` instance
    """
    CF.CreatePipeOutput(options.DestDir + '/' + options.Logfile)
    VC.OptionsCheck(options, 'pyTBT')
    CF.PrintMainHeader('pyTBT', options)

    # K-points
    if options.Gk1 > 1:
        Nk1, t1 = options.Gk1, 'GK'
    else:
        Nk1, t1 = options.Nk1, 'LIN'
    if options.Gk2 > 1:
        Nk2, t2 = options.Gk2, 'GK'
    else:
        Nk2, t2 = options.Nk2, 'LIN'
    # Generate full k-mesh:
    mesh = Kmesh.kmesh(Nk1,
                       Nk2,
                       Nk3=1,
                       meshtype=[t1, t2, 'LIN'],
                       invsymmetry=not options.skipsymmetry)
    mesh.mesh2file(
        '%s/%s.%ix%i.mesh' %
        (options.DestDir, options.systemlabel, mesh.Nk[0], mesh.Nk[1]))
    # Setup self-energies and device GF
    elecL = NEGF.ElectrodeSelfEnergy(options.fnL, options.NA1L, options.NA2L,
                                     options.voltage / 2.)
    elecL.scaling = options.scaleSigL
    elecL.semiinf = options.semiinfL
    elecR = NEGF.ElectrodeSelfEnergy(options.fnR, options.NA1R, options.NA2R,
                                     -options.voltage / 2.)
    elecR.scaling = options.scaleSigR
    elecR.semiinf = options.semiinfR
    DevGF = NEGF.GF(options.TSHS,
                    elecL,
                    elecR,
                    Bulk=options.UseBulk,
                    DeviceAtoms=options.DeviceAtoms,
                    BufferAtoms=options.buffer)
    nspin = DevGF.HS.nspin

    # k-sample only self-energies?
    if options.singlejunction:
        elecL.mesh = mesh
        mesh = Kmesh.kmesh(3, 3, 1)

    if options.dos:
        DOSL = N.zeros((nspin, len(options.Elist), DevGF.nuo), N.float)
        DOSR = N.zeros((nspin, len(options.Elist), DevGF.nuo), N.float)

        # MPSH projections?
        MPSHL = N.zeros((nspin, len(options.Elist), DevGF.nuo), N.float)
        MPSHR = N.zeros((nspin, len(options.Elist), DevGF.nuo), N.float)
        # evaluate eigenstates at Gamma
        import scipy.linalg as SLA
        DevGF.setkpoint(N.zeros(2))
        ev0, es0 = SLA.eigh(DevGF.H, DevGF.S)
        print 'MPSH eigenvalues:', ev0
        #print 'MPSH eigenvector normalizations:',N.diag(MM.mm(MM.dagger(es0),DevGF.S,es0)).real # right

    # Loop over spin
    for iSpin in range(nspin):
        # initialize transmission and shot noise arrays
        Tkpt = N.zeros((len(options.Elist), mesh.NNk, options.numchan + 1),
                       N.float)
        SNkpt = N.zeros((len(options.Elist), mesh.NNk, options.numchan + 1),
                        N.float)
        # prepare output files
        outFile = options.DestDir + '/%s.%ix%i' % (options.systemlabel,
                                                   mesh.Nk[0], mesh.Nk[1])
        if nspin < 2: thisspinlabel = outFile
        else: thisspinlabel = outFile + ['.UP', '.DOWN'][iSpin]
        fo = open(thisspinlabel + '.AVTRANS', 'write')
        fo.write('# Nk1(%s)=%i Nk2(%s)=%i eta=%.2e etaLead=%.2e\n' %
                 (mesh.type[0], mesh.Nk[0], mesh.type[1], mesh.Nk[1],
                  options.eta, options.etaLead))
        fo.write('# E   Ttot(E)   Ti(E)(i=1-%i)   RelErrorTtot(E)\n' %
                 options.numchan)
        foSN = open(thisspinlabel + '.AVNOISE', 'write')
        foSN.write('# Nk1(%s)=%i Nk2(%s)=%i eta=%.2e etaLead=%.2e\n' %
                   (mesh.type[0], mesh.Nk[0], mesh.type[1], mesh.Nk[1],
                    options.eta, options.etaLead))
        foSN.write('# E   SNtot(E)   SNi(E)(i=1-%i)\n' % options.numchan)
        foFF = open(thisspinlabel + '.FANO', 'write')
        foFF.write('# Nk1(%s)=%i Nk2(%s)=%i eta=%.2e etaLead=%.2e\n' %
                   (mesh.type[0], mesh.Nk[0], mesh.type[1], mesh.Nk[1],
                    options.eta, options.etaLead))
        foFF.write('# E   Fano factor \n')
        # Loop over energy
        for ie, ee in enumerate(options.Elist):
            Tavg = N.zeros((options.numchan + 1, len(mesh.w)), N.float)
            SNavg = N.zeros((options.numchan + 1, len(mesh.w)), N.float)
            AavL = N.zeros((DevGF.nuo, DevGF.nuo), N.complex)
            AavR = N.zeros((DevGF.nuo, DevGF.nuo), N.complex)
            # Loops over k-points
            for ik in range(mesh.NNk):
                DevGF.calcGF(ee + options.eta * 1.0j,
                             mesh.k[ik, :2],
                             ispin=iSpin,
                             etaLead=options.etaLead,
                             useSigNCfiles=options.signc,
                             SpectralCutoff=options.SpectralCutoff)
                # Transmission and shot noise
                T, SN = DevGF.calcTEIG(options.numchan)
                for iw in range(len(mesh.w)):
                    Tavg[:, iw] += T * mesh.w[iw, ik]
                    SNavg[:, iw] += SN * mesh.w[iw, ik]
                Tkpt[ie, ik] = T
                SNkpt[ie, ik] = SN
                # DOS calculation:
                if options.dos:
                    if options.SpectralCutoff > 0.0:
                        AavL += mesh.w[0, ik] * MM.mm(DevGF.AL.L, DevGF.AL.R,
                                                      DevGF.S)
                        AavR += mesh.w[0, ik] * MM.mm(DevGF.AR.L, DevGF.AR.R,
                                                      DevGF.S)
                    else:
                        AavL += mesh.w[0, ik] * MM.mm(DevGF.AL, DevGF.S)
                        AavR += mesh.w[0, ik] * MM.mm(DevGF.AR, DevGF.S)
            # Print calculated quantities
            err = (N.abs(Tavg[0, 0] - Tavg[0, 1]) +
                   N.abs(Tavg[0, 0] - Tavg[0, 2])) / 2
            relerr = err / Tavg[0, 0]
            print 'ispin= %i, e= %.4f, Tavg= %.8f, RelErr= %.1e' % (
                iSpin, ee, Tavg[0, 0], relerr)
            transline = '\n%.10f ' % ee
            noiseline = '\n%.10f ' % ee
            for ichan in range(options.numchan + 1):
                if ichan == 0:
                    transline += '%.8e ' % Tavg[ichan, 0]
                    noiseline += '%.8e ' % SNavg[ichan, 0]
                else:
                    transline += '%.4e ' % Tavg[ichan, 0]
                    noiseline += '%.4e ' % SNavg[ichan, 0]
            transline += '%.2e ' % relerr
            fo.write(transline)
            foSN.write(noiseline)
            foFF.write('\n%.10f %.8e' % (ee, SNavg[0, 0] / Tavg[0, 0]))
            # Partial density of states:
            if options.dos:
                DOSL[iSpin, ie, :] += N.diag(AavL).real / (2 * N.pi)
                DOSR[iSpin, ie, :] += N.diag(AavR).real / (2 * N.pi)
                MPSHL[iSpin, ie, :] += N.diag(MM.mm(MM.dagger(es0), AavL,
                                                    es0)).real / (2 * N.pi)
                MPSHR[iSpin, ie, :] += N.diag(MM.mm(MM.dagger(es0), AavR,
                                                    es0)).real / (2 * N.pi)
                print 'ispin= %i, e= %.4f, DOSL= %.4f, DOSR= %.4f' % (
                    iSpin, ee, N.sum(DOSL[iSpin,
                                          ie, :]), N.sum(DOSR[iSpin, ie, :]))
        fo.write('\n')
        fo.close()
        foSN.write('\n')
        foSN.close()
        foFF.write('\n')
        foFF.close()

        # Write k-point-resolved transmission
        fo = open(thisspinlabel + '.TRANS', 'write')
        for ik in range(mesh.NNk):
            w = mesh.w[:, ik]
            fo.write('\n\n# k = %f, %f    w = %f %f %f %f' %
                     (mesh.k[ik, 0], mesh.k[ik, 1], w[0], w[1], w[2], w[3]))
            for ie, ee in enumerate(options.Elist):
                transline = '\n%.10f ' % ee
                for ichan in range(options.numchan + 1):
                    if ichan == 0:
                        transline += '%.8e ' % Tkpt[ie, ik, ichan]
                    else:
                        transline += '%.4e ' % Tkpt[ie, ik, ichan]
                fo.write(transline)
        fo.write('\n')
        fo.close()

        # Write k-point-resolved shot noise
        fo = open(thisspinlabel + '.NOISE', 'write')
        for ik in range(mesh.NNk):
            w = mesh.w[:, ik]
            fo.write('\n\n# k = %f, %f    w = %f %f %f %f' %
                     (mesh.k[ik, 0], mesh.k[ik, 1], w[0], w[1], w[2], w[3]))
            for ie, ee in enumerate(options.Elist):
                noiseline = '\n%.10f ' % ee
                for ichan in range(options.numchan + 1):
                    if ichan == 0:
                        noiseline += '%.8e ' % SNkpt[ie, ik, ichan]
                    else:
                        noiseline += '%.4e ' % SNkpt[ie, ik, ichan]
                fo.write(noiseline)
        fo.write('\n')
        fo.close()

    # End loop over spin
    NEGF.SavedSig.close()  # Make sure saved Sigma is written to file

    if options.dos:
        # Read basis
        L = options.bufferL
        # Pad lasto with zeroes to enable basis generation...
        lasto = N.zeros((DevGF.HS.nua + L + 1, ), N.int)
        lasto[L:] = DevGF.HS.lasto
        basis = SIO.BuildBasis(options.fn, 1 + L, DevGF.HS.nua + L, lasto)
        basis.ii -= L
        WritePDOS(outFile + '.PDOS.gz', options, DevGF, DOSL + DOSR, basis)
        WritePDOS(outFile + '.PDOSL.gz', options, DevGF, DOSL, basis)
        WritePDOS(outFile + '.PDOSR.gz', options, DevGF, DOSR, basis)

        WriteMPSH(outFile + '.MPSH.gz', options, DevGF, MPSHL + MPSHR, ev0)
        WriteMPSH(outFile + '.MPSHL.gz', options, DevGF, MPSHL, ev0)
        WriteMPSH(outFile + '.MPSHR.gz', options, DevGF, MPSHR, ev0)

    CF.PrintMainFooter('pyTBT')
示例#10
0
    def calcGF(self,
               ee,
               kpoint,
               ispin=0,
               etaLead=0.0,
               useSigNCfiles=False,
               SpectralCutoff=0.0):
        "Calculate GF etc at energy ee and 2d k-point"
        nuo, nuoL, nuoR = self.nuo, self.nuoL, self.nuoR
        nuo0, nuoL0, nuoR0 = self.nuo0, self.nuoL0, self.nuoR0
        FoldedL, FoldedR = self.FoldedL, self.FoldedR
        devSt, devEnd = self.DeviceOrbs[0], self.DeviceOrbs[1]

        # Determine whether electrode self-energies should be k-sampled or not
        try:
            mesh = self.elecL.mesh  # a mesh was attached
        except:
            mesh = False
        # Calculate electrode self-energies
        if mesh:
            try:
                self.SigAvg  # Averaged self-energies exist
            except:
                self.SigAvg = [False, -1]
            if self.SigAvg[0] == ee and self.SigAvg[1] == ispin:
                # We have already the averaged self-energies
                print 'NEGF: Reusing sampled electrode self-energies', mesh.Nk, mesh.type, 'for ispin= %i e= %f' % (
                    ispin, ee)
            else:
                # k-sampling performed over folded electrode self-energies
                print 'NEGF: Sampling electrode self-energies', mesh.Nk, mesh.type, 'for ispin= %i e= %f' % (
                    ispin, ee)
                self.calcSigLR(ee, mesh.k[0, :2], ispin, etaLead,
                               useSigNCfiles, SpectralCutoff)
                AvgSigL = mesh.w[0, 0] * self.SigL
                AvgSigR = mesh.w[0, 0] * self.SigR
                for i in range(1, len(mesh.k)):
                    self.calcSigLR(ee, mesh.k[i, :2], ispin, etaLead,
                                   useSigNCfiles, SpectralCutoff)
                    AvgSigL += mesh.w[0, i] * self.SigL
                    AvgSigR += mesh.w[0, i] * self.SigR
                # We now simply continue with the averaged self-energies
                self.SigL = AvgSigL
                self.SigR = AvgSigR
                self.SigAvg = [ee, ispin]
        else:
            # We sample k-points the usual way
            self.calcSigLR(ee, kpoint, ispin, etaLead, useSigNCfiles)

        # Ready to calculate Gr
        self.setkpoint(kpoint, ispin)
        eSmH = ee * self.S - self.H
        if FoldedL:
            eSmH[0:nuoL, 0:nuoL] = eSmH[0:nuoL, 0:nuoL] - self.SigL
        else:
            if self.Bulk:
                eSmH[0:nuoL, 0:nuoL] = self.SigL  # SGF^1
            else:
                eSmH[0:nuoL, 0:nuoL] = eSmH[0:nuoL, 0:nuoL] - self.SigL
        if FoldedR:
            eSmH[nuo - nuoR:nuo, nuo -
                 nuoR:nuo] = eSmH[nuo - nuoR:nuo, nuo - nuoR:nuo] - self.SigR
        else:
            if self.Bulk:
                eSmH[nuo - nuoR:nuo, nuo - nuoR:nuo] = self.SigR  # SGF^1
            else:
                eSmH[nuo - nuoR:nuo,
                     nuo - nuoR:nuo] = eSmH[nuo - nuoR:nuo,
                                            nuo - nuoR:nuo] - self.SigR
        self.Gr = LA.inv(eSmH)
        self.Ga = MM.dagger(self.Gr)
        # Calculate spectral functions
        if SpectralCutoff > 0.0:
            self.AL = MM.SpectralMatrix(MM.mm(self.Gr[:, 0:nuoL], self.GamL,
                                              self.Ga[0:nuoL, :]),
                                        cutoff=SpectralCutoff)
            tmp = MM.mm(self.GamL, self.Gr[0:nuoL, :])
            self.ALT = MM.SpectralMatrix(MM.mm(self.Ga[:, 0:nuoL], tmp),
                                         cutoff=SpectralCutoff)
            self.AR = MM.SpectralMatrix(MM.mm(self.Gr[:, nuo - nuoR:nuo],
                                              self.GamR,
                                              self.Ga[nuo - nuoR:nuo, :]),
                                        cutoff=SpectralCutoff)
            self.ARGLG = MM.mm(self.AR.L, self.AR.R[:, 0:nuoL], tmp)
            self.A = self.AL + self.AR
            # transmission matrix AL.GamR
            self.TT = MM.mm(self.AL.R[:, nuo - nuoR:nuo], self.GamR,
                            self.AL.L[nuo - nuoR:nuo, :])
        else:
            self.AL = MM.mm(self.Gr[:, 0:nuoL], self.GamL, self.Ga[0:nuoL, :])
            tmp = MM.mm(self.GamL, self.Gr[0:nuoL, :])
            self.ALT = MM.mm(self.Ga[:, 0:nuoL], tmp)
            self.AR = MM.mm(self.Gr[:, nuo - nuoR:nuo], self.GamR,
                            self.Ga[nuo - nuoR:nuo, :])
            self.ARGLG = MM.mm(self.AR[:, 0:nuoL], tmp)
            self.A = self.AL + self.AR
            # transmission matrix AL.GamR
            self.TT = MM.mm(self.AL[nuo - nuoR:nuo, nuo - nuoR:nuo], self.GamR)

        print 'NEGF.calcGF: Shape of transmission matrix (TT):', self.TT.shape
        print 'NEGF.calcGF: Energy and total transmission Tr[TT].real:', ee, N.trace(
            self.TT).real
        # Write also the Gammas in the full space of Gr/Ga/A
        # (needed for the inelastic shot noise)
        self.GammaL = N.zeros(self.Gr.shape, N.complex)
        self.GammaL[0:nuoL, 0:nuoL] = self.GamL
        self.GammaR = N.zeros(self.Gr.shape, N.complex)
        self.GammaR[nuo - nuoR:nuo, nuo - nuoR:nuo] = self.GamR
示例#11
0
    def calcSigLR(self,
                  ee,
                  kpoint,
                  ispin=0,
                  etaLead=0.0,
                  useSigNCfiles=False,
                  SpectralCutoff=0.0):
        """
        Calculate (folded) self-energy at energy ee and 2d k-point
        Uses SpectralMatrix format for the spectralfunction matrices, see MiscMath, if cutoff>0.0
        """

        nuoL, nuoR = self.nuoL, self.nuoR
        nuo0, nuoL0, nuoR0 = self.nuo0, self.nuoL0, self.nuoR0
        FoldedL, FoldedR = self.FoldedL, self.FoldedR
        devSt, devEnd = self.DeviceOrbs[0], self.DeviceOrbs[1]
        # Calculate Sigma without folding
        self.setkpoint(kpoint, ispin)
        SigL0 = self.elecL.getSig(ee,
                                  kpoint,
                                  left=True,
                                  Bulk=self.Bulk,
                                  ispin=ispin,
                                  etaLead=etaLead,
                                  useSigNCfiles=useSigNCfiles)
        SigR0 = self.elecR.getSig(ee,
                                  kpoint,
                                  left=False,
                                  Bulk=self.Bulk,
                                  ispin=ispin,
                                  etaLead=etaLead,
                                  useSigNCfiles=useSigNCfiles)

        if FoldedL:
            # Fold down from nuoL0 to the device region
            # A11 A12     g11 g12    I 0
            # A21 A22  *  g21 g22  = 0 I ->
            # g22 = (A22-A21.A11^-1.A12)^-1 ->
            # Sigma = A21.A11^-1.A12          (tau=A12)
            devEndL = self.devEndL
            # Do folding
            eSmH = ee * self.S0 - self.H0
            eSmHmS = eSmH[0:devEndL, 0:devEndL].copy()
            if self.Bulk:
                eSmHmS[0:nuoL0, 0:nuoL0] = SigL0  # SGF^1
            else:
                eSmHmS[0:nuoL0, 0:nuoL0] = eSmHmS[0:nuoL0, 0:nuoL0] - SigL0
            tau = eSmHmS[0:devSt - 1, devSt - 1:devEndL].copy()
            taud = eSmHmS[devSt - 1:devEndL, 0:devSt - 1].copy()
            inv = LA.inv(eSmHmS[0:devSt - 1, 0:devSt - 1])
            eSmHmS[devSt-1:devEndL, devSt-1:devEndL]=eSmHmS[devSt-1:devEndL, devSt-1:devEndL]-\
                MM.mm(taud, inv, tau)
            self.SigL = eSmH[devSt - 1:devEndL,
                             devSt - 1:devEndL] - eSmHmS[devSt - 1:devEndL,
                                                         devSt - 1:devEndL]
        else:
            self.SigL = SigL0
        self.GamL = 1.0j * (self.SigL - MM.dagger(self.SigL))
        if self.Bulk and not FoldedL:
            # Reverse sign since SigL is really SGF^-1
            self.GamL = -1.0 * self.GamL
        AssertReal(N.diag(self.GamL), 'GamL')

        if FoldedR:
            # Fold down from nuoR0 to the device region
            devStR = self.devStR
            eSmH = ee * self.S0 - self.H0
            eSmHmS = eSmH[devStR - 1:nuo0, devStR - 1:nuo0].copy()
            tmpnuo = len(eSmHmS)
            if self.Bulk:
                eSmHmS[tmpnuo - nuoR0:tmpnuo,
                       tmpnuo - nuoR0:tmpnuo] = SigR0  # SGF^1
            else:
                eSmHmS[tmpnuo - nuoR0:tmpnuo, tmpnuo -
                       nuoR0:tmpnuo] = eSmHmS[tmpnuo - nuoR0:tmpnuo,
                                              tmpnuo - nuoR0:tmpnuo] - SigR0
            tau = eSmHmS[0:nuoR, nuoR:tmpnuo].copy()
            taud = eSmHmS[nuoR:tmpnuo, 0:nuoR].copy()
            inv = LA.inv(eSmHmS[nuoR:tmpnuo, nuoR:tmpnuo])
            eSmHmS[0:nuoR,
                   0:nuoR] = eSmHmS[0:nuoR, 0:nuoR] - MM.mm(tau, inv, taud)
            self.SigR = eSmH[devStR - 1:devEnd,
                             devStR - 1:devEnd] - eSmHmS[0:nuoR, 0:nuoR]
        else:
            self.SigR = SigR0
        self.GamR = 1.0j * (self.SigR - MM.dagger(self.SigR))
        if self.Bulk and not FoldedR:
            # Reverse sign since SigR is really SGF^-1
            self.GamR = -1.0 * self.GamR
        AssertReal(N.diag(self.GamR), 'GamR')
示例#12
0
    def calcg0_old(self, ee, ispin=0, left=True):
        """
        Only used if SciPy is not installed!
        For the left surface Green's function  (1 is surface layer, 0 is all the other atoms):
        (E S00-H00  E S01-H01)   (g00 g01)    ( I 0 )
        (E S10-H10  E S11-H11) * (g01 g11)  = ( 0 I ) ->
        call E S - H for t ...

        t00 g01 + t01 g11 = 0  -> g01 = - t00^-1 t01 g11
        t10 g01 + t11 g11 = I -> - t10 t00^-1 t01 g11 + t11 g11 = I -> 

        And we get the surface Green's function:

        g11 = (t11 - t10 t00^-1 t01)^-1 with the right size of unitcell t00^-1 = g11!
        g11 = (E S11 - H11 - (E S10 - H10) g11 (E S01 - H01))^-1

        In the calculations H01^+ and S01^+ are used instead of S10 and H10.
        (For complex energies (E S01 -H01)^+ is not (E S10 -H10) because the conjugate of the energy!!!!)

        For the right surface greens function same but different order on the MM.daggers!
        i.e., (E S - H - (E S01 - H01) gs (E S01^+ -H01^+)

        Algorith: Lopez Sancho*2 J Phys F:Met Phys 15 (1985) 851

        I'm still very suspicios of this algorithm ... but it works and is really quick!
        The convergence is always checked against gs (E S - H - (E S01^+ - H01^+) gs (E S01 -H01) ) = I!
        """
        H, S, H01, S01 = self.H[ispin, :, :], self.S, self.H01[
            ispin, :, :], self.S01

        alpha, beta = MM.dagger(H01) - ee * MM.dagger(S01), H01 - ee * S01
        eps, epss = H.copy(), H.copy()

        converged = False
        iteration = 0
        while not converged:
            iteration += 1
            oldeps, oldepss = eps.copy(), epss.copy()
            oldalpha, oldbeta = alpha.copy(), beta.copy()
            tmpa = LA.solve(ee * S - oldeps, oldalpha)
            tmpb = LA.solve(ee * S - oldeps, oldbeta)
            alpha, beta = MM.mm(oldalpha, tmpa), MM.mm(oldbeta, tmpb)
            eps = oldeps + MM.mm(oldalpha, tmpb) + MM.mm(oldbeta, tmpa)
            if left:
                epss = oldepss + MM.mm(oldalpha, tmpb)
            else:
                epss = oldepss + MM.mm(oldbeta, tmpa)
            LopezConvTest = N.max(abs(alpha) + abs(beta))
            if LopezConvTest < 1.0e-40:
                gs = LA.inv(ee * S - epss)
                if left:
                    test = ee * S - H - MM.mm(
                        ee * MM.dagger(S01) - MM.dagger(H01), gs,
                        ee * S01 - H01)
                else:
                    test = ee * S - H - MM.mm(
                        ee * S01 - H01, gs,
                        ee * MM.dagger(S01) - MM.dagger(H01))
                myConvTest = N.max(
                    abs(
                        MM.mm(test, gs) -
                        N.identity((self.HS.nuo), N.complex)))
                if myConvTest < VC.GetCheck("Lopez-Sancho"):
                    converged = True
                    if myConvTest > VC.GetCheck("Lopez-Sancho-warning"):
                        v = "RIGHT"
                        if left: v = "LEFT"
                        print "WARNING: Lopez-scheme not-so-well converged for " + v + " electrode at E = %.4f eV:" % ee, myConvTest
                else:
                    VC.Check("Lopez-Sancho", myConvTest,
                             "Error: gs iteration {0}".format(iteration))
        return gs
示例#13
0
def main(options):
    CF.CreatePipeOutput(options.DestDir + '/' + options.Logfile)
    #VC.OptionsCheck(options,'Phonons')

    CF.PrintMainHeader('Bandstructures', options)

    try:
        fdf = glob.glob(options.onlyTSdir + '/RUN.fdf')
        TSrun = True
    except:
        fdf = glob.glob(options.FCwildcard +
                        '/RUN.fdf')  # This should be made an input flag
        TSrun = False
    SCDM = Supercell_DynamicalMatrix(fdf, TSrun)

    # Write high-symmetry path
    WritePath(options.DestDir + '/symmetry-path', SCDM.Sym.path, options.steps)

    # Write mesh
    k1, k2, k3 = ast.literal_eval(options.mesh)
    rvec = 2 * N.pi * N.array([SCDM.Sym.b1, SCDM.Sym.b2, SCDM.Sym.b3])
    import Inelastica.physics.mesh as Kmesh
    # Full mesh
    kmesh = Kmesh.kmesh(2**k1,
                        2**k2,
                        2**k3,
                        meshtype=['LIN', 'LIN', 'LIN'],
                        invsymmetry=False)
    WriteKpoints(options.DestDir + '/mesh_%ix%ix%i' % tuple(kmesh.Nk),
                 N.dot(kmesh.k, rvec))
    # Mesh reduced by inversion symmetry
    kmesh = Kmesh.kmesh(2**k1,
                        2**k2,
                        2**k3,
                        meshtype=['LIN', 'LIN', 'LIN'],
                        invsymmetry=True)
    WriteKpoints(options.DestDir + '/mesh_%ix%ix%i_invsym' % tuple(kmesh.Nk),
                 N.dot(kmesh.k, rvec))

    # Evaluate electron k-points
    if options.kfile:
        # Prepare Hamiltonian etc in Gamma for whole supercell
        natoms = SIO.GetFDFlineWithDefault(fdf[0], 'NumberOfAtoms', int, -1,
                                           'Error')
        SCDM.PrepareGradients(options.onlySdir,
                              N.array([0., 0., 0.]),
                              1,
                              natoms,
                              AbsEref=False,
                              atype=N.complex,
                              TSrun=TSrun)
        SCDM.nao = SCDM.h0.shape[-1]
        SCDM.FirstOrb = SCDM.OrbIndx[0][0]  # First atom = 1
        SCDM.LastOrb = SCDM.OrbIndx[SCDM.Sym.basis.NN -
                                    1][1]  # Last atom = Sym.NN
        SCDM.rednao = SCDM.LastOrb + 1 - SCDM.FirstOrb
        # Read kpoints
        kpts, dk, klabels, kticks = ReadKpoints(options.kfile)
        if klabels:
            # Only write ascii if labels exist
            WriteKpoints(options.DestDir + '/kpoints', kpts, klabels)
        # Prepare netcdf
        ncfn = options.DestDir + '/Electrons.nc'
        ncf = NC4.Dataset(ncfn, 'w')
        # Grid
        ncf.createDimension('gridpts', len(kpts))
        ncf.createDimension('vector', 3)
        grid = ncf.createVariable('grid', 'd', ('gridpts', 'vector'))
        grid[:] = kpts
        grid.units = '1/Angstrom'
        # Geometry
        ncf.createDimension('atoms', SCDM.Sym.basis.NN)
        xyz = ncf.createVariable('xyz', 'd', ('atoms', 'vector'))
        xyz[:] = SCDM.Sym.basis.xyz
        xyz.units = 'Angstrom'
        pbc = ncf.createVariable('pbc', 'd', ('vector', 'vector'))
        pbc.units = 'Angstrom'
        pbc[:] = [SCDM.Sym.a1, SCDM.Sym.a2, SCDM.Sym.a3]
        rvec1 = ncf.createVariable('rvec', 'd', ('vector', 'vector'))
        rvec1.units = '1/Angstrom (incl. factor 2pi)'
        rvec1[:] = rvec
        ncf.sync()
        # Loop over kpoints
        for i, k in enumerate(kpts):
            if i < 100:  # Print only for the first 100 points
                ev, evec = SCDM.ComputeElectronStates(k,
                                                      verbose=True,
                                                      TSrun=TSrun)
            else:
                ev, evec = SCDM.ComputeElectronStates(k,
                                                      verbose=False,
                                                      TSrun=TSrun)
                # otherwise something simple
                if i % 100 == 0:
                    print '%i out of %i k-points computed' % (i, len(kpts))
            if i == 0:
                ncf.createDimension('nspin', SCDM.nspin)
                ncf.createDimension('orbs', SCDM.rednao)
                if options.nbands and options.nbands < SCDM.rednao:
                    nbands = options.nbands
                else:
                    nbands = SCDM.rednao
                ncf.createDimension('bands', nbands)
                evals = ncf.createVariable('eigenvalues', 'd',
                                           ('gridpts', 'nspin', 'bands'))
                evals.units = 'eV'
                evecsRe = ncf.createVariable(
                    'eigenvectors.re', 'd',
                    ('gridpts', 'nspin', 'orbs', 'bands'))
                evecsIm = ncf.createVariable(
                    'eigenvectors.im', 'd',
                    ('gridpts', 'nspin', 'orbs', 'bands'))
                # Check eigenvectors
                print 'SupercellPhonons: Checking eigenvectors at', k
                for j in range(SCDM.nspin):
                    ev2 = N.diagonal(
                        MM.mm(MM.dagger(evec[j]), SCDM.h0_k[j], evec[j]))
                    print ' ... spin %i: Allclose=' % j, N.allclose(ev[j],
                                                                    ev2,
                                                                    atol=1e-5,
                                                                    rtol=1e-3)
                ncf.sync()
            # Write to NetCDF
            evals[i, :] = ev[:, :nbands]
            evecsRe[i, :] = evec[:, :, :nbands].real
            evecsIm[i, :] = evec[:, :, :nbands].imag
        ncf.sync()
        # Include basis orbitals in netcdf file
        if SCDM.Sym.basis.NN == len(SCDM.OrbIndx):
            lasto = N.zeros(SCDM.Sym.basis.NN + 1, N.float)
            lasto[:SCDM.Sym.basis.NN] = SCDM.OrbIndx[:SCDM.Sym.basis.NN, 0]
            lasto[SCDM.Sym.basis.NN] = SCDM.OrbIndx[SCDM.Sym.basis.NN - 1,
                                                    1] + 1
        else:
            lasto = SCDM.OrbIndx[:SCDM.Sym.basis.NN + 1, 0]
        orbbasis = SIO.BuildBasis(fdf[0], 1, SCDM.Sym.basis.NN, lasto)
        # Note that the above basis is for the geometry with an atom FC-moved in z.
        #print dir(orbbasis)
        #print orbbasis.xyz # Hence, this is not the correct geometry of the basis atoms!
        center = ncf.createVariable('orbcenter', 'i', ('orbs', ))
        center[:] = N.array(orbbasis.ii - 1, dtype='int32')
        center.description = 'Atom index (counting from 0) of the orbital center'
        nn = ncf.createVariable('N', 'i', ('orbs', ))
        nn[:] = N.array(orbbasis.N, dtype='int32')
        ll = ncf.createVariable('L', 'i', ('orbs', ))
        ll[:] = N.array(orbbasis.L, dtype='int32')
        mm = ncf.createVariable('M', 'i', ('orbs', ))
        mm[:] = N.array(orbbasis.M, dtype='int32')
        # Cutoff radius and delta
        Rc = ncf.createVariable('Rc', 'd', ('orbs', ))
        Rc[:] = orbbasis.coff
        Rc.units = 'Angstrom'
        delta = ncf.createVariable('delta', 'd', ('orbs', ))
        delta[:] = orbbasis.delta
        delta.units = 'Angstrom'
        # Radial components of the orbitals
        ntb = len(orbbasis.orb[0])
        ncf.createDimension('ntb', ntb)
        rii = ncf.createVariable('rii', 'd', ('orbs', 'ntb'))
        rii[:] = N.outer(orbbasis.delta, N.arange(ntb))
        rii.units = 'Angstrom'
        radialfct = ncf.createVariable('radialfct', 'd', ('orbs', 'ntb'))
        radialfct[:] = orbbasis.orb
        # Sort eigenvalues to connect crossing bands?
        if options.sorting:
            for i in range(SCDM.nspin):
                evals[:, i, :] = SortBands(evals[:, i, :])
        # Produce nice plots if labels exist
        if klabels:
            if SCDM.nspin == 1:
                PlotElectronBands(options.DestDir + '/Electrons.agr', dk,
                                  evals[:, 0, :], kticks)
            elif SCDM.nspin == 2:
                PlotElectronBands(options.DestDir + '/Electrons.UP.agr', dk,
                                  evals[:, 0, :], kticks)
                PlotElectronBands(options.DestDir + '/Electrons.DOWN.agr', dk,
                                  evals[:, 1, :], kticks)
        ncf.close()

    if TSrun:  # only electronic calculation
        return SCDM.Sym.path

    # Compute phonon eigenvalues
    if options.qfile:
        SCDM.SymmetrizeFC(options.radius)
        SCDM.SetMasses()
        qpts, dq, qlabels, qticks = ReadKpoints(options.qfile)
        if qlabels:
            # Only write ascii if labels exist
            WriteKpoints(options.DestDir + '/qpoints', qpts, qlabels)
        # Prepare netcdf
        ncfn = options.DestDir + '/Phonons.nc'
        ncf = NC4.Dataset(ncfn, 'w')
        # Grid
        ncf.createDimension('gridpts', len(qpts))
        ncf.createDimension('vector', 3)
        grid = ncf.createVariable('grid', 'd', ('gridpts', 'vector'))
        grid[:] = qpts
        grid.units = '1/Angstrom'
        # Geometry
        ncf.createDimension('atoms', SCDM.Sym.basis.NN)
        xyz = ncf.createVariable('xyz', 'd', ('atoms', 'vector'))
        xyz[:] = SCDM.Sym.basis.xyz
        xyz.units = 'Angstrom'
        pbc = ncf.createVariable('pbc', 'd', ('vector', 'vector'))
        pbc.units = 'Angstrom'
        pbc[:] = [SCDM.Sym.a1, SCDM.Sym.a2, SCDM.Sym.a3]
        rvec1 = ncf.createVariable('rvec', 'd', ('vector', 'vector'))
        rvec1.units = '1/Angstrom (incl. factor 2pi)'
        rvec1[:] = rvec
        ncf.sync()
        # Loop over q
        for i, q in enumerate(qpts):
            if i < 100:  # Print only for the first 100 points
                hw, U = SCDM.ComputePhononModes_q(q, verbose=True)
            else:
                hw, U = SCDM.ComputePhononModes_q(q, verbose=False)
                # otherwise something simple
                if i % 100 == 0:
                    print '%i out of %i q-points computed' % (i, len(qpts))
            if i == 0:
                ncf.createDimension('bands', len(hw))
                ncf.createDimension('displ', len(hw))
                evals = ncf.createVariable('eigenvalues', 'd',
                                           ('gridpts', 'bands'))
                evals.units = 'eV'
                evecsRe = ncf.createVariable('eigenvectors.re', 'd',
                                             ('gridpts', 'bands', 'displ'))
                evecsIm = ncf.createVariable('eigenvectors.im', 'd',
                                             ('gridpts', 'bands', 'displ'))
                # Check eigenvectors
                print 'SupercellPhonons.Checking eigenvectors at', q
                tmp = MM.mm(N.conjugate(U), SCDM.FCtilde, N.transpose(U))
                const = PC.hbar2SI * (1e20 / (PC.eV2Joule * PC.amu2kg))**0.5
                hw2 = const * N.diagonal(tmp)**0.5  # Units in eV
                print ' ... Allclose=', N.allclose(hw,
                                                   N.absolute(hw2),
                                                   atol=1e-5,
                                                   rtol=1e-3)
                ncf.sync()
            evals[i] = hw
            evecsRe[i] = U.real
            evecsIm[i] = U.imag
        ncf.sync()
        # Sort eigenvalues to connect crossing bands?
        if options.sorting:
            evals = SortBands(evals)
        # Produce nice plots if labels exist
        if qlabels:
            PlotPhononBands(options.DestDir + '/Phonons.agr', dq,
                            N.array(evals[:]), qticks)
        ncf.close()

    # Compute e-ph couplings
    if options.kfile and options.qfile:
        SCDM.ReadGradients(AbsEref=False)
        ncf = NC4.Dataset(options.DestDir + '/EPH.nc', 'w')
        ncf.createDimension('kpts', len(kpts))
        ncf.createDimension('qpts', len(qpts))
        ncf.createDimension('modes', len(hw))
        ncf.createDimension('nspin', SCDM.nspin)
        ncf.createDimension('bands', SCDM.rednao)
        ncf.createDimension('vector', 3)
        kgrid = ncf.createVariable('kpts', 'd', ('kpts', 'vector'))
        kgrid[:] = kpts
        qgrid = ncf.createVariable('qpts', 'd', ('qpts', 'vector'))
        qgrid[:] = qpts
        evalfkq = ncf.createVariable('evalfkq', 'd',
                                     ('kpts', 'qpts', 'nspin', 'bands'))
        # First (second) band index n (n') is the initial (final) state, i.e.,
        # Mkq(k,q,mode,spin,n,n') := < n',k+q | dV_q(mode) | n,k >
        MkqAbs = ncf.createVariable(
            'Mkqabs', 'd',
            ('kpts', 'qpts', 'modes', 'nspin', 'bands', 'bands'))
        GkqAbs = ncf.createVariable(
            'Gkqabs', 'd',
            ('kpts', 'qpts', 'modes', 'nspin', 'bands', 'bands'))
        ncf.sync()
        # Loop over k-points
        for i, k in enumerate(kpts):
            kpts[i] = k
            # Compute initial electronic states
            evi, eveci = SCDM.ComputeElectronStates(k, verbose=True)
            # Loop over q-points
            for j, q in enumerate(qpts):
                # Compute phonon modes
                hw, U = SCDM.ComputePhononModes_q(q, verbose=True)
                # Compute final electronic states
                evf, evecf = SCDM.ComputeElectronStates(k + q, verbose=True)
                evalfkq[i, j, :] = evf
                # Compute electron-phonon couplings
                m, g = SCDM.ComputeEPHcouplings_kq(
                    k, q)  # (modes,nspin,bands,bands)
                # Data to file
                # M (modes,spin,i,l) = m(modes,k,j) init(i,j) final(k,l)
                #                            0 1 2       0,1        0 1
                #                                ^-------^
                #                              ^----------------------^
                for ispin in range(SCDM.nspin):
                    evecfd = MM.dagger(evecf[ispin])  # (bands,bands)
                    M = N.tensordot(N.tensordot(m[:, ispin],
                                                eveci[ispin],
                                                axes=[2, 0]),
                                    evecfd,
                                    axes=[1, 1])
                    G = N.tensordot(N.tensordot(g[:, ispin],
                                                eveci[ispin],
                                                axes=[2, 0]),
                                    evecfd,
                                    axes=[1, 1])
                    MkqAbs[i, j, :, ispin] = N.absolute(M)
                    GkqAbs[i, j, :, ispin] = N.absolute(G)
                ncf.sync()
        ncf.close()
    return SCDM.Sym.path