示例#1
0
def test_recover_testing_from_run_recovery(
        mean_teacher_model: bool,
        test_output_dirs: OutputFolderForTests) -> None:
    """
    Checks that inference results are the same whether from a checkpoint in the same run, from a run recovery or from a
    local_weights_path param.
    """
    # Train for 4 epochs
    config = DummyClassification()
    if mean_teacher_model:
        config.mean_teacher_alpha = 0.999
    config.set_output_to(test_output_dirs.root_dir / "original")
    os.makedirs(str(config.outputs_folder))
    config.save_start_epoch = 2
    config.save_step_epochs = 2

    checkpoint_handler = get_default_checkpoint_handler(
        model_config=config, project_root=test_output_dirs.root_dir)
    train_results = model_train(config, checkpoint_handler=checkpoint_handler)
    assert len(train_results.learning_rates_per_epoch) == config.num_epochs

    # Run inference on this
    test_results = model_test(config=config,
                              data_split=ModelExecutionMode.TEST,
                              checkpoint_handler=checkpoint_handler)
    assert isinstance(test_results, InferenceMetricsForClassification)
    assert list(test_results.epochs.keys()) == [config.num_epochs]

    # Mimic using a run recovery and see if it is the same
    config_run_recovery = DummyClassification()
    if mean_teacher_model:
        config_run_recovery.mean_teacher_alpha = 0.999
    config_run_recovery.set_output_to(test_output_dirs.root_dir /
                                      "run_recovery")
    os.makedirs(str(config_run_recovery.outputs_folder))

    checkpoint_handler_run_recovery = get_default_checkpoint_handler(
        model_config=config_run_recovery,
        project_root=test_output_dirs.root_dir)
    # make it seem like run recovery objects have been downloaded
    checkpoint_root = config_run_recovery.checkpoint_folder / "recovered"
    shutil.copytree(str(config.checkpoint_folder), str(checkpoint_root))
    checkpoint_handler_run_recovery.run_recovery = RunRecovery(
        [checkpoint_root])
    test_results_run_recovery = model_test(
        config_run_recovery,
        data_split=ModelExecutionMode.TEST,
        checkpoint_handler=checkpoint_handler_run_recovery)
    assert isinstance(test_results_run_recovery,
                      InferenceMetricsForClassification)
    assert list(test_results_run_recovery.epochs.keys()) == [config.num_epochs]
    assert test_results.epochs[config.num_epochs].values()[MetricType.CROSS_ENTROPY.value] == \
           test_results_run_recovery.epochs[config.num_epochs].values()[MetricType.CROSS_ENTROPY.value]

    # Run inference with the local checkpoints
    config_local_weights = DummyClassification()
    if mean_teacher_model:
        config_local_weights.mean_teacher_alpha = 0.999
    config_local_weights.set_output_to(test_output_dirs.root_dir /
                                       "local_weights_path")
    os.makedirs(str(config_local_weights.outputs_folder))

    local_weights_path = test_output_dirs.root_dir / "local_weights_file.pth"
    shutil.copyfile(
        str(
            create_checkpoint_path(config.checkpoint_folder,
                                   epoch=config.num_epochs)),
        local_weights_path)
    config_local_weights.local_weights_path = local_weights_path

    checkpoint_handler_local_weights = get_default_checkpoint_handler(
        model_config=config_local_weights,
        project_root=test_output_dirs.root_dir)
    checkpoint_handler_local_weights.discover_and_download_checkpoints_from_previous_runs(
    )
    test_results_local_weights = model_test(
        config_local_weights,
        data_split=ModelExecutionMode.TEST,
        checkpoint_handler=checkpoint_handler_local_weights)
    assert isinstance(test_results_local_weights,
                      InferenceMetricsForClassification)
    assert list(test_results_local_weights.epochs.keys()) == [0]
    assert test_results.epochs[config.num_epochs].values()[MetricType.CROSS_ENTROPY.value] == \
           test_results_local_weights.epochs[0].values()[MetricType.CROSS_ENTROPY.value]
示例#2
0
def test_recover_testing_from_run_recovery(
        mean_teacher_model: bool,
        test_output_dirs: OutputFolderForTests) -> None:
    """
    Checks that inference results are the same whether from a checkpoint in the same run, from a run recovery or from a
    local_weights_path param.
    """
    # Train for 4 epochs
    config = DummyClassification()
    if mean_teacher_model:
        config.mean_teacher_alpha = 0.999
    config.set_output_to(test_output_dirs.root_dir / "original")
    os.makedirs(str(config.outputs_folder))

    train_results, checkpoint_handler = model_train_unittest(
        config, output_folder=test_output_dirs)
    assert len(train_results.train_results_per_epoch()) == config.num_epochs

    # Run inference on this
    test_results = model_test(
        config=config,
        data_split=ModelExecutionMode.TEST,
        checkpoint_paths=checkpoint_handler.get_checkpoints_to_test())
    assert isinstance(test_results, InferenceMetricsForClassification)

    # Mimic using a run recovery and see if it is the same
    config_run_recovery = DummyClassification()
    if mean_teacher_model:
        config_run_recovery.mean_teacher_alpha = 0.999
    config_run_recovery.set_output_to(test_output_dirs.root_dir /
                                      "run_recovery")
    os.makedirs(str(config_run_recovery.outputs_folder))

    checkpoint_handler_run_recovery = get_default_checkpoint_handler(
        model_config=config_run_recovery,
        project_root=test_output_dirs.root_dir)
    # make it seem like run recovery objects have been downloaded
    checkpoint_root = config_run_recovery.checkpoint_folder / "recovered"
    shutil.copytree(str(config.checkpoint_folder), str(checkpoint_root))
    checkpoint_handler_run_recovery.run_recovery = RunRecovery(
        [checkpoint_root])
    test_results_run_recovery = model_test(
        config_run_recovery,
        data_split=ModelExecutionMode.TEST,
        checkpoint_paths=checkpoint_handler_run_recovery.
        get_checkpoints_to_test())
    assert isinstance(test_results_run_recovery,
                      InferenceMetricsForClassification)
    assert test_results.metrics.values()[MetricType.CROSS_ENTROPY.value] == \
           test_results_run_recovery.metrics.values()[MetricType.CROSS_ENTROPY.value]

    # Run inference with the local checkpoints
    config_local_weights = DummyClassification()
    if mean_teacher_model:
        config_local_weights.mean_teacher_alpha = 0.999
    config_local_weights.set_output_to(test_output_dirs.root_dir /
                                       "local_weights_path")
    os.makedirs(str(config_local_weights.outputs_folder))

    local_weights_path = test_output_dirs.root_dir / "local_weights_file.pth"
    shutil.copyfile(
        str(config.checkpoint_folder / LAST_CHECKPOINT_FILE_NAME_WITH_SUFFIX),
        local_weights_path)
    config_local_weights.local_weights_path = [local_weights_path]

    checkpoint_handler_local_weights = get_default_checkpoint_handler(
        model_config=config_local_weights,
        project_root=test_output_dirs.root_dir)
    checkpoint_handler_local_weights.download_recovery_checkpoints_or_weights()
    test_results_local_weights = model_test(
        config_local_weights,
        data_split=ModelExecutionMode.TEST,
        checkpoint_paths=checkpoint_handler_local_weights.
        get_checkpoints_to_test())
    assert isinstance(test_results_local_weights,
                      InferenceMetricsForClassification)
    assert test_results.metrics.values()[MetricType.CROSS_ENTROPY.value] == \
           test_results_local_weights.metrics.values()[MetricType.CROSS_ENTROPY.value]