示例#1
0
def pitchshift_stream(sound_array, n, window_size=2**13, h=2**11):
    """
    Changes the pitch of a sound by n semitones.

    Notes
    -----
    This application has 2 sink_window agents and 3 streams x, y, z.
    Stretch agent: The first agent gets input x and outputs y which
    stretches the data in stream x. The stretching code is from Zulko,
    pianoputer. 
    Speed up agent: The next agent gets input y and outputs z which
    speeds up y by the specified factor. This agent interpolates the
    data in y to the number of points determined by factor.

    """
    factor = 2**(1.0 * n / 12.0)
    f = 1.0 / factor

    # Declare streams
    x = StreamArray('x', dtype=np.int16)
    y = StreamArray('y', dtype=np.int16)
    z = StreamArray('z', dtype=np.int16)

    # Define the stretch agent
    stretch_object = Stretch(in_stream=x,
                             out_stream=y,
                             factor=factor,
                             window_size=window_size,
                             h=h)
    sink_window(func=stretch_object.stretch,
                in_stream=x,
                window_size=window_size + h,
                step_size=int(h * f))

    # Define the speedup agent.
    def f(window, out_stream):
        indices = np.arange(0, window_size, factor)
        out_stream.extend(
            np.int16(np.interp(indices, np.arange(window_size), window)))

    sink_window(func=f,
                in_stream=y,
                window_size=window_size,
                step_size=window_size,
                out_stream=z)

    # Partition sound_array into sound bites. Extend the
    # input with a sequence of sound bites and run each
    # sound bite until the sound_array data is finished.
    sound_bite_size = 2**14
    for i in range(0, sound_array.size, sound_bite_size):
        # sound_bite = sound_array[i:i+sound_bite_size]
        x.extend(sound_array[i:i + sound_bite_size])
        run()
    # Process any data in sound_array that wasn't processed
    # in the for loop.
    x.extend(sound_array[i:])

    # Return the result.
    return z.recent[:z.stop]
示例#2
0
    def test_multiply_operator_with_arrays(self):
        x = StreamArray(dtype=int)
        y = StreamArray(dtype=int)
        z = y * x

        x.extend(np.arange(3))
        y.extend(np.arange(100, 105, 2))
        run()
        assert np.array_equal(recent_values(z), np.array([0, 102, 208]))
示例#3
0
    def test_minus_operator_with_arrays(self):
        x = StreamArray(dtype=int)
        y = StreamArray(dtype=int)
        z = y - x

        x.extend(np.arange(3))
        y.extend(np.arange(100, 105, 2))
        run()
        assert np.array_equal(recent_values(z), np.array([100, 101, 102]))
示例#4
0
 def test_minus_operator_with_arrays_and_dimension(self):
     x = StreamArray(dimension=3, dtype=int)
     y = StreamArray(dimension=3, dtype=int)
     z = y - x
     A = np.array([[10, 20, 30], [40, 50, 60]])
     B = np.array([[100, 100, 100], [200, 200, 200], [300, 300, 00]])
     x.extend(A)
     y.extend(B)
     run()
     assert np.array_equal(recent_values(z),
                           np.array([[90, 80, 70], [160, 150, 140]]))
示例#5
0
    def test_map_list_with_arrays(self):
        from IoTPy.agent_types.op import map_list
        x = StreamArray(dtype=int)
        y = StreamArray(dtype=int)

        def f(A):
            return 2 * A

        map_list(f, x, y)
        x.extend(np.arange(5))
        run()
        assert np.array_equal(recent_values(y), 2 * np.arange(5))
示例#6
0
    def test_iot(self):
        x = StreamArray(dtype=int)
        y = StreamArray(dtype=int)
        z = StreamArray(dtype=int)
        u = StreamArray(dtype=int)
        v = StreamArray(dtype=int)
        
        def f(A, y, z):
            """
            Function wrapped by an iot agent. The first parameter
            'A' is an array obtained from the input stream of the
            agent. The other parameters, y and z, are positional
            arguments (*args) of the function.

            The function returns a pointer into the input stream.
            In this example, each call to the function processes
            the entire input array 'A' and so the function returns
            len(A).

            """
            y.extend(2*A)
            z.extend(3*A)
            # Return a pointer into the input array.
            return len(A)

        def g(A, u, v):
            """
            Parameters are similar to f.

            """
            u.extend(A+A)
            v.extend(A**2)
            return len(A)

        # Create agents that wrap functions f and g.
        iot(f, x, y, z)
        iot(g, x, u, v)

        # Extend stream x with an array
        x.extend(np.arange(5, dtype=int))
        run()
        assert np.array_equal(recent_values(y), 2*np.arange(5, dtype=int))
        assert np.array_equal(recent_values(z), 3*np.arange(5, dtype=int))
        assert np.array_equal(recent_values(u), 2*np.arange(5, dtype=int))
        assert np.array_equal(recent_values(v), np.arange(5, dtype=int)**2)

        # Extend stream x with another array
        x.extend(np.arange(5, 10, dtype=int))
        run()
        assert np.array_equal(recent_values(y), 2*np.arange(10, dtype=int))
        assert np.array_equal(recent_values(z), 3*np.arange(10, dtype=int))
        assert np.array_equal(recent_values(u), 2*np.arange(10, dtype=int))
        assert np.array_equal(recent_values(v), np.arange(10, dtype=int)**2)
示例#7
0
    def test_sink_3(self):
        x = StreamArray(dtype='int')
        y = StreamArray()

        @sink_w
        def f(window, y):
            y.append(window[-1] - np.mean(window))

        f(x, window_size=2, step_size=1, y=y)
        x.extend(np.arange(5))
        run()
        assert (np.array_equal(recent_values(y), np.array([0.5, 0.5, 0.5,
                                                           0.5])))
示例#8
0
    def test_iot_class(self):

        x = StreamArray(name='x', dtype=int)
        y = StreamArray(name='y', dtype=int)
        # Create an agent that wraps np.sum
        sw = self.sliding_window_test(
            func=np.sum, in_stream=x, out_stream=y, window_size=5, step_size=2)
        x.extend(np.arange(10, dtype=int))
        run()
        assert np.array_equal(recent_values(y), np.array([10, 20, 30]))
        x.extend(np.arange(10, 20, dtype=int))
        run()
        assert np.array_equal(recent_values(y),
                              np.array([10, 20., 30, 40, 50, 60, 70, 80]))
示例#9
0
 def test_stream_arrays_2(self):
     """
     Example where the input stream of an agent is a stream array and
     its output stream is not a stream array.
     """
     x = StreamArray(name='x', dimension=3, dtype=float)
     y = Stream()
     map_element(func=np.median, in_stream=x, out_stream=y)
     x.append(np.array([1., 2., 3.]))
     run()
     assert y.recent[:y.stop] == [2.0]
     x.extend(np.array([[4., 5., 6.], [7., 8., 9.]]))
     run()
     assert y.recent[:y.stop] == [2.0, 5.0, 8.0]
示例#10
0
    def test_multiply_function_with_multidimensional_array(self):
        x = StreamArray(dimension=2, dtype=int)

        # Create a stream array y.
        y = f_mul(x, 2)

        A = np.array([[1, 10], [2, 20], [3, 30]])
        x.extend(A)
        run()
        assert np.array_equal(recent_values(y), [[2, 20], [4, 40], [6, 60]])

        x.append(np.array([4, 40]))
        run()
        assert np.array_equal(recent_values(y),
                              [[2, 20], [4, 40], [6, 60], [8, 80]])
示例#11
0
def test_kmeans_sliding_windows():
    print('-----------------------------------------')
    print(' ')
    print('testing kmeans sliding windows')
    num_dimensions = 2
    window_size = 12
    step_size = 2
    num_clusters = 4
    in_stream = StreamArray(name='in', dimension=num_dimensions)
    out_stream = StreamArray(name='out', dimension=window_size, dtype=int)
    kmeans_sliding_windows(in_stream, out_stream, window_size, step_size,
                           num_clusters)

    points = np.array([
        [+1.0, +1.0],
        [+1.1, +1.1],
        [+0.9, +0.9],
        [+1.0, -1.0],
        [+1.1, -0.9],
        [+0.9, -1.1],
        [-1.0, +1.0],
        [-1.1, +0.9],
        [-0.9, +1.1],
        [-1.0, -1.0],
        [-1.1, -1.1],
        [-0.9, -0.9],
        # NEXT STEP
        [+1.0, +1.0],
        [+1.1, +1.1],
        # NEXT STEP
        [+0.9, +0.9],
        [+1.0, -1.0],
        # NEXT STEP
        [-1.2, -1.2],
        [-0.8, -0.8]
    ])
    in_stream.extend(points)
    run()
    print(' ')
    print('num_dimensions = ', num_dimensions)
    print('window_size = ', window_size)
    print('step_size = ', step_size)
    print('num_clusters = ', num_clusters)
    print('points: ')
    print(points)
    print('output_stream: ')
    print(recent_values(out_stream))
示例#12
0
    def test_fmap_with_stream_array(self):
        x = StreamArray(dimension=2, dtype=int)

        @fmap_e
        def g(v):
            return 2 * v

        y = g(x)

        A = np.array([[1, 10], [2, 20], [3, 30]])
        x.extend(A)
        run()
        assert np.array_equal(recent_values(y), [[2, 20], [4, 40], [6, 60]])

        x.append(np.array([4, 40]))
        run()
        assert np.array_equal(recent_values(y),
                              [[2, 20], [4, 40], [6, 60], [8, 80]])
示例#13
0
    def test_iot_merge(self):
        x = StreamArray(dtype=float)
        y = StreamArray(dtype=float)
        z = StreamArray(dimension=2, dtype=float)
        
        def f(A_list, z):
            """
            f is the function wrapped by an iot_merge agent.
            A_list is a list of arrays. A_list[j] is the input array obtained
            from the j-th input stream of the agent that wraps f.
            z is the positional argument of f. z is an output stream that is
            extended by f.

            The agent completes reading n_rows elements of each array in
            A_list where n_rows is the number of elements in the smallest
            array. So, the function returns n_rows.

            """
            n_rows = min([len(A) for A in A_list])
            n_cols = len(A_list)
            out = np.column_stack((A_list[0][:n_rows], A_list[1][:n_rows]))
            z.extend(out)
            return [n_rows for A in A_list]

        # Create the agent by wrapping function f.
        # A_list has two arrays from streams x and y.
        # z is a keyword argument for f.
        iot_merge(f, [x, y], z=z)
        # Extend stream x with [0, 1, 2, 3, 4]
        x.extend(np.arange(5, dtype=float))
        run()
        assert np.array_equal(recent_values(x), np.array(np.arange(5, dtype=float)))
        assert np.array_equal(recent_values(x), np.array([0., 1., 2., 3., 4.]))
        assert np.array_equal(recent_values(y), np.zeros(shape=(0,), dtype=float))
        assert np.array_equal(recent_values(z), np.zeros(shape=(0, 2), dtype=float))
        y.extend(np.arange(100, 107, dtype=float))
        run()
        assert np.array_equal(recent_values(x), np.array([0., 1., 2., 3., 4.]))
        assert np.array_equal(recent_values(y), np.array([100., 101., 102., 103., 104., 105., 106.]))
        assert np.array_equal(
            recent_values(z), np.array(
                [[  0., 100.], [  1., 101.], [  2., 102.], [  3., 103.], [  4., 104.]]))
示例#14
0
    def test_simple_array(self):
        """
        Same as test_simple except that StreamArray is used in place
        of Stream.
        
        Create an agent with a single input stream array, x, and a single
        output stream array, y. The elements of y are twice the corresponding
        elements of x.

        """
        # Create the streams arrays.
        x = StreamArray(name='x', dtype=int)
        y = StreamArray(name='y', dtype=int)

        def f(array_of_int, s):
            """
            Parameters
            ----------
            f: func
               the function that is wrapped by iot to create an
               agent.
            array_of_int: NumPy array of int
            s: StreamArray
               the output stream array of the agent.

            Returns
            -------
            The function returns len(array_of_int) because the
            agent has finished processing the entire array.

            """
            s.extend(array_of_int * 2)
            return len(array_of_int)

        # Create the agent by wrapping function f.
        iot(f, x, y)

        # Extend input stream x of the agent with an array
        x.extend(np.arange(5, dtype=int))
        run()
        assert np.array_equal(
            recent_values(y), np.array([0, 2, 4, 6, 8]))
示例#15
0
 def test_sliding_window_with_startup(self):
     x = StreamArray(dtype=int)
     y = StreamArray(dtype=int)
     sw = sliding_window_with_startup(
         func=np.sum, in_stream=x, out_stream=y, window_size=10, step_size=3)
     # tests
     x.extend(np.arange(6, dtype=int))
     run()
     assert np.array_equal(recent_values(y), np.array([3, 15]))
     x.extend(np.arange(6, 9, dtype=int))
     run()
     assert np.array_equal(recent_values(y), np.array([3, 15, 36]))
     x.extend(np.arange(9, 15, dtype=int))
     run()
     assert np.array_equal(
         recent_values(y),
         np.array([3,  15,  36,  65,  95]))
     x.extend(np.arange(15, 30, dtype=int))
     run()
     assert np.array_equal(
         recent_values(y),
         np.array([3,  15,  36,  65,  95, 125, 155, 185, 215, 245]))
示例#16
0
    def test_plus_operator_with_arrays_1(self):
        x = StreamArray(dtype=int)
        y = StreamArray(dtype=int)
        z = x + y

        x.extend(np.arange(3))
        y.extend(np.arange(100, 105))
        run()
        assert isinstance(recent_values(z), np.ndarray)
        assert np.array_equal(recent_values(z), np.array([100, 102, 104]))

        x.extend(np.arange(3, 7))
        run()
        assert np.array_equal(recent_values(z),
                              np.array([100, 102, 104, 106, 108]))

        run()
        assert np.array_equal(recent_values(z),
                              np.array([100, 102, 104, 106, 108]))
示例#17
0
    def test_plus_operator_with_arrays(self):
        x = StreamArray(dimension=2, dtype=int)
        y = StreamArray(dimension=2, dtype=int)
        z = x + y
        A = np.arange(6).reshape((3, 2))
        B = np.arange(100, 110).reshape((5, 2))
        x.extend(A)
        y.extend(B)
        run()
        assert isinstance(z, StreamArray)
        assert np.array_equal(recent_values(z),
                              np.array([[100, 102], [104, 106], [108, 110]]))

        C = np.arange(6, 12).reshape((3, 2))
        x.extend(C)
        run()
        assert np.array_equal(
            recent_values(z),
            np.array([[100, 102], [104, 106], [108, 110], [112, 114],
                      [116, 118]]))
示例#18
0
 def test_multiply_function_with_arrays(self):
     x = StreamArray(dtype=int)
     y = f_mul(x, 100)
     x.extend(np.arange(3))
     run()
     assert np.array_equal(recent_values(y), np.array([0, 100, 200]))
示例#19
0
    def test_some_merge_agents(self):
        import numpy as np
        scheduler = Stream.scheduler

        #----------------------------------------------------
        # Declare streams
        s = Stream('s')
        t = Stream('t')
        u = Stream('u')
        v_stream = Stream('v')
        x = Stream('x')

        #----------------------------------------------------
        # Define functions
        def g(lst):
            return sum(lst)

        def g_args(lst, multiplier):
            return sum(lst) * multiplier

        def general_f(lst, f):
            return f(lst)

        def fff(lst, f, addend):
            return f(lst, addend)

        def hhh(lst, addend):
            return sum(lst) + addend

        #----------------------------------------------------
        # Define agents
        d = zip_map(func=sum, in_streams=[x, u], out_stream=s, name='d')

        def magnitude(vector):
            return math.sqrt(sum([w * w for w in vector]))

        ssssss = Stream()
        ddd = zip_map(func=magnitude, in_streams=[x, u], out_stream=ssssss)
        zipxu = zip_stream_f([x, u])
        zip_map_xu = zip_map_f(sum, [x, u])
        zip_map_xu_merge = Stream('zip map xu merge')
        zip_map(sum, [x, u], zip_map_xu_merge)
        zip_map_g_args = zip_map_f(g_args, [x, u], multiplier=2)
        dd = zip_map(func=general_f,
                     in_streams=[x, u],
                     out_stream=t,
                     name='dd',
                     f=np.mean)
        zip_map_ss = zip_map_f(np.mean, [x, u])
        dddd = zip_map(func=fff,
                       in_streams=[x, u],
                       out_stream=v_stream,
                       name='dddd',
                       f=hhh,
                       addend=10)

        #----------------------------------------------------
        #----------------------------------------------------
        # Append values to stream
        x.extend(list(range(3)))
        u.extend([10, 15, 18])
        scheduler.step()
        assert recent_values(s) == [10, 16, 20]
        assert recent_values(zip_map_g_args) == [
            2 * v for v in recent_values(s)
        ]
        assert recent_values(zipxu) == [(0, 10), (1, 15), (2, 18)]
        assert recent_values(t) == [5, 8, 10]
        assert recent_values(zip_map_ss) == [5.0, 8.0, 10.0]
        assert recent_values(v_stream) == [20, 26, 30]
        assert recent_values(zip_map_xu) == s.recent[:s.stop]
        assert recent_values(zip_map_xu) == recent_values(zip_map_xu_merge)

        #----------------------------------------------------
        u.append(37)
        x.extend(list(range(3, 5, 1)))
        scheduler.step()
        assert recent_values(s) == [10, 16, 20, 40]
        assert recent_values(zip_map_g_args) == [
            2 * v for v in recent_values(s)
        ]
        assert recent_values(zipxu) == [(0, 10), (1, 15), (2, 18), (3, 37)]
        assert recent_values(t) == [5, 8, 10, 20]
        assert recent_values(v_stream) == [20, 26, 30, 50]
        assert recent_values(zip_map_xu) == recent_values(zip_map_xu_merge)
        assert recent_values(ssssss) == [
            10.0, 15.033296378372908, 18.110770276274835, 37.12142238654117
        ]

        #----------------------------------------------------
        u.extend([96, 95])
        scheduler.step()
        assert recent_values(s) == [10, 16, 20, 40, 100]
        assert recent_values(zipxu) == [(0, 10), (1, 15), (2, 18), (3, 37),
                                        (4, 96)]
        assert recent_values(t) == [5, 8, 10, 20, 50]
        assert recent_values(v_stream) == [20, 26, 30, 50, 110]
        assert recent_values(zip_map_xu) == recent_values(zip_map_xu_merge)

        #----------------------------------------------------
        # TEST MERGE_ASYNCH AND MIX
        #----------------------------------------------------

        x = Stream('x')
        y = Stream('y')
        z = Stream('z')
        w = Stream('w')

        def g_asynch(pair):
            index, value = pair
            if index == 0:
                return value * 10
            elif index == 1:
                return value * 2
            else:
                raise Exception()

        merge_asynch(func=lambda v: v, in_streams=[x, y], out_stream=z)
        merge_asynch(func=g_asynch, in_streams=[x, y], out_stream=w)
        mix_z = mix_f([x, y])
        scheduler.step()
        assert recent_values(z) == []
        assert recent_values(mix_z) == []
        assert recent_values(w) == []

        x.append(10)
        scheduler.step()
        assert recent_values(z) == [(0, 10)]
        assert recent_values(mix_z) == recent_values(z)
        assert recent_values(w) == [100]

        y.append('A')
        scheduler.step()
        assert recent_values(z) == [(0, 10), (1, 'A')]
        assert recent_values(mix_z) == recent_values(z)
        assert recent_values(w) == [100, 'AA']

        y.append('B')
        scheduler.step()
        assert recent_values(z) == [(0, 10), (1, 'A'), (1, 'B')]
        assert recent_values(mix_z) == recent_values(z)
        assert recent_values(w) == [100, 'AA', 'BB']

        x.append(20)
        scheduler.step()
        assert recent_values(z) == [(0, 10), (1, 'A'), (1, 'B'), (0, 20)]
        assert recent_values(z) == recent_values(mix_z)
        assert recent_values(w) == [100, 'AA', 'BB', 200]

        fahrenheit = Stream('fahrenheit')
        celsius = Stream('celsius')

        def fahrenheit_and_celsius(pair):
            index, value = pair
            if index == 0:
                return (value - 32.0) / 1.8
            elif index == 1:
                return value
            else:
                raise Exception()

        fahrenheit_stream = Stream('fahrenheit temperatures')
        celsius_stream = Stream('celsius temperatures')
        centigrade_stream = Stream('centigrade temperatures')

        merge_asynch(func=fahrenheit_and_celsius,
                     in_streams=[fahrenheit_stream, celsius_stream],
                     out_stream=centigrade_stream)

        fahrenheit_stream.append(32)
        scheduler.step()
        assert recent_values(centigrade_stream) == [0.0]

        fahrenheit_stream.append(50)
        scheduler.step()
        assert recent_values(centigrade_stream) == [0.0, 10.0]

        fahrenheit_stream.append(68)
        scheduler.step()
        assert recent_values(centigrade_stream) == [0.0, 10.0, 20.0]

        celsius_stream.append(-10.0)
        scheduler.step()
        assert recent_values(centigrade_stream) == [0.0, 10.0, 20.0, -10.0]

        #----------------------------------------------------
        # TEST BLEND
        #----------------------------------------------------

        x = Stream('x')
        y = Stream('y')
        z = Stream('z')
        z_addend = Stream('z_addend')

        def double(v):
            return 2 * v

        def double_add(v, addend):
            return 2 * v + addend

        blend(func=double, in_streams=[x, y], out_stream=z)
        blend(func=double, in_streams=[x, y], out_stream=z_addend)
        blend_z = blend_f(double, [x, y])
        blend_add_z = blend_f(double_add, [x, y], addend=10)

        x.append(1)
        scheduler.step()
        assert recent_values(z) == [2]
        assert recent_values(blend_z) == recent_values(z)
        assert recent_values(blend_add_z) == [v + 10 for v in recent_values(z)]

        x.extend(list(range(2, 4)))
        scheduler.step()
        assert recent_values(z) == [2, 4, 6]
        assert recent_values(blend_z) == recent_values(z)
        assert recent_values(blend_add_z) == [v + 10 for v in recent_values(z)]

        y.extend(list(range(100, 102)))
        scheduler.step()
        assert recent_values(z) == [2, 4, 6, 200, 202]
        assert recent_values(blend_z) == recent_values(z)
        assert recent_values(blend_add_z) == [v + 10 for v in recent_values(z)]

        x.extend([10, 20])
        scheduler.step()
        assert recent_values(z) == [2, 4, 6, 200, 202, 20, 40]
        assert recent_values(blend_z) == recent_values(z)
        assert recent_values(blend_add_z) == [v + 10 for v in recent_values(z)]

        #----------------------------------------------------
        # TEST MANY
        #----------------------------------------------------

        # func operates on a list with one element for each input stream.
        # func returns a list with one element for each output stream.
        def f_many(lst):
            return [sum(lst), sum(lst) + 1]

        u_stream = Stream(name='u_stream')
        v_stream = Stream(name='v_stream')
        w_stream = Stream(name='w_stream')
        x_stream = Stream(name='x_stream')

        multi_agent = multi_element(func=f_many,
                                    in_streams=[u_stream, v_stream],
                                    out_streams=[w_stream, x_stream],
                                    name='multi_agent')
        ww_stream, xx_stream = multi_element_f(func=f_many,
                                               in_streams=[u_stream, v_stream],
                                               num_out_streams=2)

        u_stream.extend(list(range(5)))
        v_stream.extend(list(range(0, 40, 4)))
        scheduler.step()
        assert recent_values(w_stream) == [0, 5, 10, 15, 20]
        assert recent_values(x_stream) == [1, 6, 11, 16, 21]
        assert recent_values(ww_stream) == recent_values(w_stream)
        assert recent_values(xx_stream) == recent_values(x_stream)

        # ------------------------------------
        # Test many with args and kwargs
        # func operates on a list with one element for each input stream.
        # func returns a list with one element for each output stream.
        def f_multi_args_kwargs(lst, multiplicand, addend):
            return sum(lst) * multiplicand, sum(lst) + addend

        u_args_kwargs_stream = Stream(name='u_args_kwargs_stream')
        v_args_kwargs_stream = Stream(name='v_args_kwargs_stream')
        w_args_kwargs_stream = Stream(name='w_args_kwargs_stream')
        x_args_kwargs_stream = Stream(name='x_args_kwargs_stream')

        multi_args_kwargs_agent = multi_element(
            func=f_multi_args_kwargs,
            in_streams=[u_args_kwargs_stream, v_args_kwargs_stream],
            out_streams=[w_args_kwargs_stream, x_args_kwargs_stream],
            name='multi_args_kwargs_agent',
            multiplicand=2,
            addend=10)
        ww_args_kwargs_stream, xx_args_kwargs_stream = multi_element_f(
            func=f_multi_args_kwargs,
            in_streams=[u_args_kwargs_stream, v_args_kwargs_stream],
            num_out_streams=2,
            multiplicand=2,
            addend=10)
        assert (recent_values(ww_args_kwargs_stream) == recent_values(
            w_args_kwargs_stream))
        assert (recent_values(xx_args_kwargs_stream) == recent_values(
            x_args_kwargs_stream))

        u_args_kwargs_stream.extend(list(range(5)))
        v_args_kwargs_stream.extend(list(range(0, 40, 4)))
        scheduler.step()
        assert recent_values(w_args_kwargs_stream) == [0, 10, 20, 30, 40]
        assert recent_values(x_args_kwargs_stream) == [10, 15, 20, 25, 30]
        assert (recent_values(ww_args_kwargs_stream) == recent_values(
            w_args_kwargs_stream))
        assert (recent_values(xx_args_kwargs_stream) == recent_values(
            x_args_kwargs_stream))

        u_args_kwargs_stream.append(100)
        v_args_kwargs_stream.extend(list(range(40, 80, 4)))
        scheduler.step()
        assert recent_values(w_args_kwargs_stream) == \
          [0, 10, 20, 30, 40, 240]
        assert recent_values(x_args_kwargs_stream) == \
          [10, 15, 20, 25, 30, 130]
        assert (recent_values(ww_args_kwargs_stream) == recent_values(
            w_args_kwargs_stream))
        assert (recent_values(xx_args_kwargs_stream) == recent_values(
            x_args_kwargs_stream))

        u_args_kwargs_stream.extend([200, 300])
        scheduler.step()
        v_args_kwargs_stream.append(100)
        scheduler.step()
        assert recent_values(w_args_kwargs_stream) == \
          [0, 10, 20, 30, 40, 240, 448, 656]
        assert recent_values(x_args_kwargs_stream) == \
          [10, 15, 20, 25, 30, 130, 234, 338]
        assert (recent_values(ww_args_kwargs_stream) == recent_values(
            w_args_kwargs_stream))
        assert (recent_values(xx_args_kwargs_stream) == recent_values(
            x_args_kwargs_stream))

        #----------------------------------------------------
        #----------------------------------------------------
        # TEST STREAM ARRAY
        #----------------------------------------------------
        #----------------------------------------------------

        #----------------------------------------------------
        # Test zip_map with StreamArray
        #----------------------------------------------------
        x = StreamArray('x')
        y = StreamArray('y')
        z = StreamArray('z')
        a = StreamArray('a')

        def sum_array_axis_0(a_list_of_arrays):
            return np.sum(a_list_of_arrays, axis=0)

        merge_list(func=sum_array_axis_0, in_streams=[x, y], out_stream=z)

        def mean_array_axis_0(a_list_of_arrays):
            return np.mean(a_list_of_arrays, axis=0)

        zip_map_list(func=mean_array_axis_0, in_streams=[x, y], out_stream=a)

        x.extend(np.linspace(0.0, 9.0, 10))
        scheduler.step()
        y.extend(np.linspace(0.0, 4.0, 5))
        scheduler.step()
        expected_array = np.sum(
            [np.linspace(0.0, 4.0, 5),
             np.linspace(0.0, 4.0, 5)], axis=0)
        assert isinstance(z, StreamArray)
        assert np.array_equal(recent_values(z), expected_array)
        expected_means = np.linspace(0.0, 4.0, 5)
        assert np.array_equal(recent_values(a), expected_means)

        #----------------------------------------------------
        # Test blend with StreamArray
        #----------------------------------------------------
        x = StreamArray('x')
        y = StreamArray('y')
        z = StreamArray('z')
        a = StreamArray('a')

        def double(v):
            return 2 * v

        def double_add(v, addend):
            return 2 * v + addend

        ## blend(func=double, in_streams=[x, y], out_stream=z)
        ## blend(func=double_add, in_streams=[x, y], out_stream=a, addend=10.0)

        ## x.append(np.array(1.0))
        ## scheduler.step()
        ## assert np.array_equal(recent_values(z), np.array([2.0]))
        ## assert np.array_equal(recent_values(a), recent_values(z)+10.0)

        ## x.extend(np.linspace(2.0, 3.0, 2))
        ## scheduler.step()
        ## assert np.array_equal(recent_values(z), np.array([2., 4., 6.]))
        ## assert np.array_equal(recent_values(a), recent_values(z)+10.0)

        ## y.extend(np.linspace(100.0, 101.0, 2))
        ## scheduler.step()
        ## assert np.array_equal(recent_values(z), [2., 4., 6., 200., 202.])
        ## assert np.array_equal(recent_values(a), recent_values(z)+10.0)

        ## x.extend([10., 20.])
        ## scheduler.step()
        ## assert np.array_equal(recent_values(z), [2., 4., 6., 200., 202., 20., 40.])
        ## assert np.array_equal(recent_values(a), recent_values(z)+10.0)

        #----------------------------------------------------
        # Test merge_asynch with StreamArray
        #----------------------------------------------------

        x = StreamArray('x')
        y = StreamArray('y')
        dt_0 = np.dtype([('time', int), ('value', float)])
        z = StreamArray('z', dimension=2)

        merge_asynch(func=lambda v: v, in_streams=[x, y], out_stream=z)
        scheduler.step()
        assert np.array_equal(recent_values(z), np.empty(shape=(0, 2)))

        x.append(np.array(10.0))
        scheduler.step()
        assert np.array_equal(recent_values(z), np.array([(0, 10.0)]))

        y.append(np.array(1.0))
        scheduler.step()
        assert np.array_equal(recent_values(z), [(0, 10.), (1, 1.0)])

        y.append(np.array(2.0))
        scheduler.step()
        assert np.array_equal(recent_values(z), [(0, 10.), (1, 1.0), (1, 2.0)])

        x.append(np.array(20.0))
        scheduler.step()
        assert np.array_equal(recent_values(z), [(0, 10.), (1, 1.), (1, 2.),
                                                 (0, 20.)])

        #----------------------------------------------------------------
        # Test window merge agent with no state
        r = Stream('r')
        w = Stream('w')
        x = Stream('x')
        a = Stream('a')

        def h(list_of_windows):
            return sum([sum(window) for window in list_of_windows])

        merge_window(func=h,
                     in_streams=[r, w],
                     out_stream=x,
                     window_size=3,
                     step_size=3)
        merge_stream = merge_window_f(func=h,
                                      in_streams=[r, w],
                                      window_size=3,
                                      step_size=3)

        #----------------------------------------------------------------

        #----------------------------------------------------------------
        # Test window merge agent with state
        def h_with_state(list_of_windows, state):
            return (sum([sum(window)
                         for window in list_of_windows]) + state, state + 1)

        merge_window(func=h_with_state,
                     in_streams=[r, w],
                     out_stream=a,
                     window_size=3,
                     step_size=3,
                     state=0)
        #----------------------------------------------------------------

        #----------------------------------------------------------------
        r.extend(list(range(16)))
        scheduler.step()
        assert recent_values(r) == list(range(16))
        assert recent_values(x) == []
        assert recent_values(merge_stream) == recent_values(x)
        assert recent_values(a) == []

        w.extend([10, 12, 14, 16, 18])
        scheduler.step()
        assert recent_values(r) == list(range(16))
        assert recent_values(w) == [10, 12, 14, 16, 18]
        assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14)]
        assert recent_values(a) == [39]

        #----------------------------------------------------------------
        r.extend([10, -10, 21, -20])
        scheduler.step()
        assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14)]
        assert recent_values(a) == [39]

        #----------------------------------------------------------------
        w.append(20)
        scheduler.step()
        assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14),
                                    (3 + 4 + 5) + (16 + 18 + 20)]
        assert recent_values(a) == [39, 67]

        #----------------------------------------------------------------
        r.extend([-1, 1, 0])
        scheduler.step()
        assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14),
                                    (3 + 4 + 5) + (16 + 18 + 20)]
        assert recent_values(a) == [39, 67]

        #----------------------------------------------------------------
        # TEST MERGE_WINDOW WITH STREAM ARRAY
        #----------------------------------------------------------------
        x = StreamArray('x', dimension=2)
        b = StreamArray('b', dimension=2)
        a = StreamArray('a', dimension=2)

        #----------------------------------------------------------------
        # Test window merge agent with state
        def h_array(list_of_windows, state):
            return (sum([sum(window)
                         for window in list_of_windows]) + state, state + 1)

        merge_window(func=h_array,
                     in_streams=[x, a],
                     out_stream=b,
                     window_size=2,
                     step_size=2,
                     state=0)
        #----------------------------------------------------------------
        x.extend(np.array([[1., 5.], [7., 11.]]))
        a.extend(np.array([[0., 1.], [2., 3.]]))
        scheduler.step()
        np.array_equal(recent_values(b), np.empty(shape=(0, 2)))

        a.extend(np.array([[0., 1.], [1., 0.]]))
        scheduler.step()
        np.array_equal(recent_values(b), np.empty(shape=(0, 2)))

        x.extend(np.array([[14., 18.], [18., 30.], [30., 38.], [34., 42.]]))
        scheduler.step()

        #-------------------------------------------------------------------
        # TEST MERGE_LIST
        #-------------------------------------------------------------------
        # Function g  operates on a list of lists, one list for each input
        # stream, to return a single list for the output stream.
        x = Stream('x list merge')
        u = Stream('u list merge')
        s = Stream('s list merge')

        def g(list_of_lists):
            return [sum(snapshot) for snapshot in list(zip(*list_of_lists))]

        d = merge_list(func=g, in_streams=[x, u], out_stream=s, name='d')
        ss = merge_list_f(g, [x, u])
        x.extend(list(range(4)))
        u.extend(list(range(10, 20, 2)))
        scheduler.step()
        assert recent_values(x) == [0, 1, 2, 3]
        assert recent_values(u) == [10, 12, 14, 16, 18]
        assert recent_values(s) == [10, 13, 16, 19]

        x = StreamArray()
        y = StreamArray()
        z = StreamArray(dtype='bool')

        def f(two_lists):
            return np.array(two_lists[0]) > np.array(two_lists[1])

        merge_list(f, [x, y], z)
        x.extend(np.array([3.0, 5.0, 7.0]))
        y.extend(np.array([4.0, 3.0, 10.0]))
        run()
示例#20
0
    def test_list(self):
        scheduler = Stream.scheduler

        n = Stream('n')
        o = Stream('o')
        p = Stream('p')
        q = Stream('q')
        r = Stream('r')
        s = Stream('s')
        t = Stream('t')
        u = Stream('u')
        v = Stream('v')
        w = Stream('w')
        x = Stream('x')
        y = Stream('y')
        z = Stream('z')

        #-------------------------------------------------------------------
        # Test simple map
        def simple(lst):
            return [2 * v for v in lst]

        a = map_list(func=simple, in_stream=x, out_stream=y, name='a')
        yy = map_list_f(simple, x)

        #-------------------------------------------------------------------

        #-------------------------------------------------------------------
        # Test map with state
        # Function that operates on an element and state and returns an
        # element and state.
        def f(input_list, state):
            output_list = [[]] * len(input_list)
            for i in range(len(input_list)):
                output_list[i] = input_list[i] + state
                state += 2
            return output_list, state

        b = map_list(func=f, in_stream=x, out_stream=z, state=0, name='b')
        zz = map_list_f(f, x, 0)
        #-------------------------------------------------------------------

        #-------------------------------------------------------------------
        # Test map with call streams
        c = map_list(func=f,
                     in_stream=x,
                     out_stream=v,
                     state=10,
                     call_streams=[w],
                     name='c')

        #-------------------------------------------------------------------

        #-------------------------------------------------------------------
        # Test sink with state
        def sink_with_state(input_list, output_list):
            # sink has no output stream.
            # This function only returns the next state.
            return output_list.extend(input_list)

        out_list = []
        # In this simple example, out_list will be the same as the input
        # stream.
        sink_agent = sink_list(func=sink_with_state,
                               in_stream=x,
                               name='sink_agent',
                               state=out_list)
        out_list_stream = []
        # Function version of the previous agent example
        sink_list_f(sink_with_state, x, out_list_stream)

        #-------------------------------------------------------------------

        #-------------------------------------------------------------------
        # Test merge
        # Function that operates on a list of lists
        def g(list_of_lists):
            return [sum(snapshot) for snapshot in zip(*list_of_lists)]

        d = merge_list(func=g, in_streams=[x, u], out_stream=s, name='d')
        ss = merge_list_f(g, [x, u])

        #-------------------------------------------------------------------

        #-------------------------------------------------------------------
        # Test split
        def h(input_list):
            return [[element + 1 for element in input_list],
                    [element * 2 for element in input_list]]

        e = split_list(func=h, in_stream=x, out_streams=[r, t], name='e')
        rr, tt = split_list_f(h, x, num_out_streams=2)

        #-------------------------------------------------------------------

        #-------------------------------------------------------------------
        # Test split with state
        def h_state(input_list, state):
            length = len(input_list)
            output_list_0 = [[]] * length
            output_list_1 = [[]] * length
            for i in range(length):
                output_list_0[i] = input_list[i] + state
                output_list_1[i] = input_list[i] * state
                state += 1
            return ([output_list_0, output_list_1], state)

        split_list(func=h_state, in_stream=x, out_streams=[p, q], state=0)
        pp, qq = split_list_f(h_state, x, num_out_streams=2, state=0)

        #-------------------------------------------------------------------

        #-------------------------------------------------------------------
        # Test many
        def f_many(list_of_lists):
            snapshots = list(zip(*list_of_lists))
            return [[max(snapshot) for snapshot in snapshots],
                    [min(snapshot) for snapshot in snapshots]]

        multi_agent = multi_list(func=f_many,
                                 in_streams=[x, u],
                                 out_streams=[n, o],
                                 name='multi_agent')
        nn, oo = multi_list_f(func=f_many,
                              in_streams=[x, u],
                              num_out_streams=2)
        #-------------------------------------------------------------------

        #-------------------------------------------------------------------
        #-------------------------------------------------------------------
        x.extend(list(range(5)))
        run()
        assert recent_values(x) == list(range(5))
        assert recent_values(y) == [0, 2, 4, 6, 8]
        assert recent_values(z) == [0, 3, 6, 9, 12]
        assert recent_values(v) == []
        assert out_list == list(range(5))
        assert out_list == out_list_stream
        assert recent_values(s) == []
        assert recent_values(r) == [1, 2, 3, 4, 5]
        assert recent_values(t) == [0, 2, 4, 6, 8]
        assert recent_values(p) == [0, 2, 4, 6, 8]
        assert recent_values(q) == [0, 1, 4, 9, 16]
        assert recent_values(n) == []
        assert recent_values(o) == []
        assert recent_values(y) == recent_values(yy)
        assert recent_values(z) == recent_values(zz)
        assert recent_values(s) == recent_values(ss)
        assert recent_values(r) == recent_values(rr)
        assert recent_values(t) == recent_values(tt)
        assert recent_values(p) == recent_values(pp)
        assert recent_values(q) == recent_values(qq)
        assert recent_values(n) == recent_values(nn)
        assert recent_values(o) == recent_values(oo)

        #-------------------------------------------------------------------

        #-------------------------------------------------------------------
        w.append(0)
        run()

        assert recent_values(x) == list(range(5))
        assert recent_values(y) == [0, 2, 4, 6, 8]
        assert recent_values(z) == [0, 3, 6, 9, 12]
        assert recent_values(v) == [10, 13, 16, 19, 22]
        assert out_list == list(range(5))
        assert recent_values(s) == []
        assert recent_values(r) == [1, 2, 3, 4, 5]
        assert recent_values(t) == [0, 2, 4, 6, 8]
        assert recent_values(p) == [0, 2, 4, 6, 8]
        assert recent_values(q) == [0, 1, 4, 9, 16]
        assert recent_values(n) == []
        assert recent_values(o) == []
        assert recent_values(y) == recent_values(yy)
        assert recent_values(z) == recent_values(zz)
        assert recent_values(s) == recent_values(ss)
        assert recent_values(r) == recent_values(rr)
        assert recent_values(t) == recent_values(tt)
        assert recent_values(p) == recent_values(pp)
        assert recent_values(q) == recent_values(qq)
        assert recent_values(n) == recent_values(nn)
        assert recent_values(o) == recent_values(oo)
        #-------------------------------------------------------------------

        #-------------------------------------------------------------------
        u.extend([10, 15, 18])
        run()
        assert recent_values(s) == [10, 16, 20]
        assert recent_values(n) == [10, 15, 18]
        assert recent_values(o) == [0, 1, 2]

        u.append(37)
        run()
        assert recent_values(s) == [10, 16, 20, 40]
        assert recent_values(n) == [10, 15, 18, 37]
        assert recent_values(o) == [0, 1, 2, 3]

        u.extend([96, 95])
        run()
        assert recent_values(x) == list(range(5))
        assert recent_values(y) == [0, 2, 4, 6, 8]
        assert recent_values(z) == [0, 3, 6, 9, 12]
        assert recent_values(v) == [10, 13, 16, 19, 22]
        assert out_list == list(range(5))
        assert recent_values(s) == [10, 16, 20, 40, 100]
        assert recent_values(r) == [1, 2, 3, 4, 5]
        assert recent_values(t) == [0, 2, 4, 6, 8]
        assert recent_values(p) == [0, 2, 4, 6, 8]
        assert recent_values(q) == [0, 1, 4, 9, 16]
        assert recent_values(n) == [10, 15, 18, 37, 96]
        assert recent_values(o) == [0, 1, 2, 3, 4]

        assert recent_values(y) == recent_values(yy)
        assert recent_values(z) == recent_values(zz)
        assert recent_values(s) == recent_values(ss)
        assert recent_values(r) == recent_values(rr)
        assert recent_values(t) == recent_values(tt)
        assert recent_values(p) == recent_values(pp)
        assert recent_values(q) == recent_values(qq)
        assert recent_values(n) == recent_values(nn)
        assert recent_values(o) == recent_values(oo)

        #------------------------------------------------------------------
        #------------------------------------------------------------------
        # Test NumPy arrays: StreamArray
        #------------------------------------------------------------------
        #------------------------------------------------------------------
        # Test list map on StreamArray (dimension is 0).
        a_stream_array = StreamArray(name='a_stream_array')
        b_stream_array = StreamArray(name='b_stream_array')

        def f_np(input_array):
            return input_array + 1

        a_np_agent = map_list(func=f_np,
                              in_stream=a_stream_array,
                              out_stream=b_stream_array,
                              name='a_np_agent')
        bb_stream_array = map_array_f(f_np, a_stream_array)

        run()
        assert np.array_equal(recent_values(b_stream_array),
                              np.array([], dtype=np.float64))
        assert np.array_equal(recent_values(b_stream_array),
                              recent_values(bb_stream_array))

        a_stream_array.extend(np.arange(5.0))
        run()
        assert np.array_equal(recent_values(b_stream_array),
                              np.arange(5.0) + 1)
        assert np.array_equal(recent_values(b_stream_array),
                              recent_values(bb_stream_array))

        a_stream_array.extend(np.arange(5.0, 10.0, 1.0))
        run()
        assert np.array_equal(recent_values(b_stream_array),
                              np.arange(10.0) + 1)
        assert np.array_equal(recent_values(b_stream_array),
                              recent_values(bb_stream_array))

        # Test list map with state on StreamArray (dimension is 0)
        c_stream_array = StreamArray(name='c_stream_array')
        d_stream_array = StreamArray(name='d_stream_array')

        def f_np_state(input_array, state):
            return np.cumsum(input_array) + state, np.sum(input_array)

        b_np_agent = map_list(func=f_np_state,
                              in_stream=c_stream_array,
                              out_stream=d_stream_array,
                              state=0.0,
                              name='b_np_agent')
        dd_stream_array = map_array_f(f_np_state, c_stream_array, state=0.0)
        run()
        assert np.array_equal(recent_values(d_stream_array),
                              np.array([], dtype=np.float64))
        assert np.array_equal(recent_values(d_stream_array),
                              recent_values(dd_stream_array))

        c_stream_array.extend(np.arange(5.0))
        run()
        assert np.array_equal(d_stream_array.recent[:d_stream_array.stop],
                              np.cumsum(np.arange(5.0)))
        assert np.array_equal(recent_values(d_stream_array),
                              recent_values(dd_stream_array))

        c_stream_array.extend(np.arange(5.0, 10.0, 1.0))
        run()
        assert np.array_equal(d_stream_array.recent[:d_stream_array.stop],
                              np.cumsum(np.arange(10.0)))
        assert np.array_equal(recent_values(d_stream_array),
                              recent_values(dd_stream_array))

        # Test list map with positive integer dimension on StreamArray
        e_stream_array = StreamArray(name='e_stream_array', dimension=3)
        f_stream_array = StreamArray(name='f_stream_array', dimension=2)

        def f_np_dimension(input_array):
            output_array = np.zeros([len(input_array), 2])
            output_array[:, 0] = input_array[:, 0] + input_array[:, 1]
            output_array[:, 1] = input_array[:, 2]
            return output_array

        c_np_agent = map_list(func=f_np_dimension,
                              in_stream=e_stream_array,
                              out_stream=f_stream_array,
                              name='c_np_agent')
        e_stream_array.extend(np.array([[1.0, 2.0, 3.0]]))
        run()
        assert np.array_equal(f_stream_array.recent[:f_stream_array.stop],
                              np.array([[3.0, 3.0]]))

        e_stream_array.extend(np.array([[4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]))
        run()
        assert np.array_equal(f_stream_array.recent[:f_stream_array.stop],
                              np.array([[3.0, 3.0], [9.0, 6.0], [15.0, 9.0]]))

        # Test list map with a dimension which is a tuple of integers.
        g_stream_array = StreamArray(name='g_stream_array', dimension=(2, 2))
        h_stream_array = StreamArray(name='h_stream_array', dimension=(2, 2))

        def f_np_tuple_dimension(input_array):
            return input_array * 2

        d_np_agent = map_list(func=f_np_tuple_dimension,
                              in_stream=g_stream_array,
                              out_stream=h_stream_array,
                              name='d_np_agent')
        a_array = np.array([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0,
                                                                    8.0]]])
        g_stream_array.extend(a_array)
        run()
        assert np.array_equal(h_stream_array.recent[:h_stream_array.stop],
                              a_array * 2)

        b_array = np.array([[[9.0, 10.0], [11.0, 12.0]]])
        g_stream_array.extend(b_array)
        run()
        assert np.array_equal(h_stream_array.recent[:h_stream_array.stop],
                              np.vstack((a_array, b_array)) * 2)

        # Test list map with a datatype and dimension of 0.
        dt_0 = np.dtype([('time', int), ('value', (float, 3))])
        dt_1 = np.dtype([('time', int), ('value', float)])
        i_stream_array = StreamArray(name='i_stream_array', dtype=dt_0)
        j_stream_array = StreamArray(name='j_stream_array', dtype=dt_1)

        def f_datatype(input_array):
            output_array = np.zeros(len(input_array), dtype=dt_1)
            output_array['time'] = input_array['time']
            output_array['value'] = np.sum(input_array['value'], axis=1)
            return output_array

        e_np_agent = map_list(func=f_datatype,
                              in_stream=i_stream_array,
                              out_stream=j_stream_array,
                              name='e_np_agent')
        c_array = np.array([(1, [2.0, 3.0, 4.0])], dtype=dt_0)
        assert j_stream_array.stop == 0

        i_stream_array.extend(c_array)
        run()
        assert np.array_equal(j_stream_array.recent[:j_stream_array.stop],
                              f_datatype(c_array))

        d_array = np.array([(10, [6.0, 7.0, 8.0]), (20, [10.0, 11.0, 12.0])],
                           dtype=dt_0)
        i_stream_array.extend(d_array)
        run()
        assert np.array_equal(j_stream_array.recent[:j_stream_array.stop],
                              f_datatype(np.hstack((c_array, d_array))))

        # Test list map with a datatype and positive integer dimension.
        k_stream_array = StreamArray(name='k_stream_array',
                                     dtype=dt_0,
                                     dimension=2)
        l_stream_array = StreamArray(name='l_stream_array', dtype=dt_1)

        def f_datatype_int_dimension(input_array):
            m = len(input_array)
            output_array = np.zeros(m, dtype=dt_1)
            for i in range(m):
                output_array[i]['time'] = np.max(input_array[i]['time'])
                output_array[i]['value'] = np.sum(input_array[i]['value'])
            return output_array

        f_np_agent = map_list(func=f_datatype_int_dimension,
                              in_stream=k_stream_array,
                              out_stream=l_stream_array,
                              name='f_np_agent')
        e_array = np.array([[(1, [2.0, 3.0, 4.0]), (2, [5.0, 6.0, 7.0])]],
                           dtype=dt_0)
        assert l_stream_array.stop == 0

        k_stream_array.extend(e_array)
        run()
        assert np.array_equal(l_stream_array.recent[:l_stream_array.stop],
                              f_datatype_int_dimension(e_array))

        f_array = np.array([[(3, [8.0, 9.0, 10.0]), (4, [11.0, 12.0, 13.0])],
                            [(5, [-1.0, 0.0, 1.0]), (6, [-2.0, 2.0, -2.0])]],
                           dtype=dt_0)
        k_stream_array.extend(f_array)
        run()
        assert np.array_equal(
            l_stream_array.recent[:l_stream_array.stop],
            f_datatype_int_dimension(np.vstack((e_array, f_array))))

        # Test list map with a datatype and a dimension which is a tuple
        m_stream_array = StreamArray(name='m_stream_array',
                                     dtype=dt_0,
                                     dimension=(2, 2))
        n_stream_array = StreamArray(name='n_stream_array', dtype=dt_1)
        g_np_agent = map_list(func=f_datatype_int_dimension,
                              in_stream=m_stream_array,
                              out_stream=n_stream_array,
                              name='g_np_agent')
        assert n_stream_array.stop == 0

        g_array = np.array(
            [
                # zeroth 2x2 array
                [[(1, [2.0, 3.0, 4.0]), (2, [5.0, 6.0, 7.0])],
                 [(3, [8.0, 9.0, 10.0]), (4, [11.0, 12.0, 13.0])]],
                # first 2x2 array
                [[(5, [12.0, 13.0, 14.0]), (6, [15.0, 16.0, 17.0])],
                 [(7, [18.0, 19.0, 20.0]), (8, [21.0, 22.0, 23.0])]]
            ],
            dtype=dt_0)
        m_stream_array.extend(g_array)
        run()
        assert np.array_equal(n_stream_array.recent[:n_stream_array.stop],
                              f_datatype_int_dimension(g_array))

        h_array = np.array([[[(9, [0.0, 1.0, -1.0]), (10, [2.0, 2.0, -4.0])],
                             [(11, [80.0, -71.0, -9.0]),
                              (15, [0.0, 0.0, 0.0])]]],
                           dtype=dt_0)
        m_stream_array.extend(h_array)
        run()
        assert np.array_equal(
            n_stream_array.recent[:n_stream_array.stop],
            f_datatype_int_dimension(np.vstack((g_array, h_array))))

        # Test list merge with StreamArray and no dimension and no data type
        a_in_0 = StreamArray(name='a_in_0')
        a_in_1 = StreamArray(name='a_in_1')
        a_out = StreamArray(name='a_out')

        def a_merge(list_of_lists):
            array_0, array_1 = list_of_lists
            return array_0 + array_1

        a_s_agent = merge_list(func=a_merge,
                               in_streams=[a_in_0, a_in_1],
                               out_stream=a_out,
                               name='a_s_agent')

        assert a_out.stop == 0

        #a_in_0.extend(np.array([1.0, 2.0, 3.0]))
        a_in_0.extend(np.array([1.0, 2.0, 3.0]))
        run()
        assert a_out.stop == 0

        a_in_0.extend(np.array([4.0, 5.0, 6.0]))
        run()
        assert a_out.stop == 0

        a_in_1.extend(np.array([10.0, 20.0]))
        run()
        assert np.array_equal(a_out.recent[:a_out.stop], np.array([11.0,
                                                                   22.0]))

        a_in_1.extend(np.array([30.0, 40.0]))
        run()
        assert np.array_equal(a_out.recent[:a_out.stop],
                              np.array([11.0, 22.0, 33.0, 44.0]))

        # Test list merge with StreamArray and no dimension and data type
        a_in_dt_0 = StreamArray(name='a_in_dt_0', dtype=dt_0)
        a_in_dt_1 = StreamArray(name='a_in_dt_1', dtype=dt_0)
        a_out_dt = StreamArray(name='out', dtype=dt_0)

        def a_merge_dtype(list_of_arrays):
            input_array_0, input_array_1 = list_of_arrays
            output_array = np.zeros(len(input_array_0), dtype=dt_0)
            output_array['time'] = \
              np.max((input_array_0['time'], input_array_1['time']), axis=0)
            output_array[
                'value'] = input_array_0['value'] + input_array_1['value']
            return output_array

        a_s_dt_agent = merge_list(func=a_merge_dtype,
                                  in_streams=[a_in_dt_0, a_in_dt_1],
                                  out_stream=a_out_dt,
                                  name='a_s_dt_agent')
        a_in_dt_0.extend(np.array([(1, [1.0, 2.0, 3.0])], dtype=dt_0))
        run()
        assert a_out_dt.stop == 0

        a_in_dt_1.extend(np.array([(2, [10.0, 20.0, 30.0])], dtype=dt_0))
        run()
        assert np.array_equal(a_out_dt.recent[:a_out_dt.stop],
                              np.array([(2, [11.0, 22.0, 33.0])], dtype=dt_0))

        a_in_dt_0.extend(
            np.array([(5, [21.0, 23.0, 32.0]), (9, [27.0, 29.0, 31.0])],
                     dtype=dt_0))
        run()
        assert np.array_equal(a_out_dt.recent[:a_out_dt.stop],
                              np.array([(2, [11.0, 22.0, 33.0])], dtype=dt_0))

        a_in_dt_1.extend(
            np.array([(6, [19.0, 17.0, 8.0]), (8, [13.0, 11.0, 9.0]),
                      (10, [3.0, 1.0, 5.0])],
                     dtype=dt_0))
        run()
        assert np.array_equal(
            a_out_dt.recent[:a_out_dt.stop],
            np.array([(2, [11.0, 22.0, 33.0]), (6, [40.0, 40.0, 40.0]),
                      (9, [40.0, 40.0, 40.0])],
                     dtype=dt_0))

        # Test list split with StreamArray and positive integer dimension and no data type
        dim = 2
        b_in = StreamArray(name='b_in', dimension=dim)
        b_out_0 = StreamArray(name='b_out_0', dimension=dim)
        b_out_1 = StreamArray(name='b_out_1')

        def b_split(array_of_arrays):
            length = len(array_of_arrays)
            output_array_0 = np.zeros((
                length,
                dim,
            ))
            output_array_1 = np.zeros(length)
            for i in range(length):
                input_array = array_of_arrays[i]
                output_array_0[i] = np.array(
                    [[np.max(input_array),
                      np.min(input_array)]])
                output_array_1[i] = np.array([np.sum(input_array)])
            return output_array_0, output_array_1

        b_split_agent = split_list(func=b_split,
                                   in_stream=b_in,
                                   out_streams=[b_out_0, b_out_1],
                                   name='b_split_agent')

        b_array_0 = np.array([[1.0, 9.0]])
        b_in.extend(b_array_0)
        run()
        assert np.array_equal(b_out_0.recent[:b_out_0.stop],
                              np.array([[9.0, 1.0]]))
        assert np.array_equal(b_out_1.recent[:b_out_1.stop], np.array([10.0]))

        b_array_1 = np.array([[98.0, 2.0]])
        b_in.extend(b_array_1)
        run()
        assert np.array_equal(b_out_0.recent[:b_out_0.stop],
                              np.array([[9.0, 1.0], [98.0, 2.0]]))
        assert np.array_equal(b_out_1.recent[:b_out_1.stop],
                              np.array([10.0, 100.0]))

        b_array_3 = np.array([[10.0, 20.0], [3.0, 37.0], [55.0, 5.0]])
        b_in.extend(b_array_3)
        run()
        assert np.array_equal(
            b_out_0.recent[:b_out_0.stop],
            np.array([[9.0, 1.0], [98.0, 2.0], [20.0, 10.0], [37.0, 3.0],
                      [55.0, 5.0]]))
        assert np.array_equal(b_out_1.recent[:b_out_1.stop],
                              np.array([10.0, 100.0, 30.0, 40.0, 60.0]))

        # Test list many with StreamArray and no dimension and no data type
        c_in_0 = StreamArray(name='c_in_0')
        c_in_1 = StreamArray(name='c_in_1')
        c_out_0 = StreamArray(name='c_out_0')
        c_out_1 = StreamArray(name='c_out_1')

        def c_many(list_of_arrays):
            length = len(list_of_arrays)
            input_array_0, input_array_1 = list_of_arrays
            output_array_0 = np.zeros(length)
            output_array_1 = np.zeros(length)
            output_array_0 = input_array_0 + input_array_1
            output_array_1 = input_array_0 - input_array_1
            return [output_array_0, output_array_1]

        c_multi_agent = multi_list(func=c_many,
                                   in_streams=[c_in_0, c_in_1],
                                   out_streams=[c_out_0, c_out_1],
                                   name='c_multi_agent')
        c_array_0_0 = np.arange(3.0) * 3
        c_array_1_0 = np.arange(3.0)
        c_in_0.extend(c_array_0_0)
        run()
        c_in_1.extend(c_array_1_0)
        run()
        assert np.array_equal(c_out_0.recent[:c_out_0.stop],
                              np.array([0.0, 4.0, 8.0]))
        assert np.array_equal(c_out_1.recent[:c_out_1.stop],
                              np.array([0.0, 2.0, 4.0]))

        c_array_0_1 = np.array([100.0])
        c_array_1_1 = np.array([4.0, 5.0, 6.0])
        c_in_0.extend(c_array_0_1)
        c_in_1.extend(c_array_1_1)
        run()
        assert np.array_equal(c_out_0.recent[:c_out_0.stop],
                              np.array([0.0, 4.0, 8.0, 104.0]))
        assert np.array_equal(c_out_1.recent[:c_out_1.stop],
                              np.array([0.0, 2.0, 4.0, 96.0]))

        ## # Test list many with StreamArray and no dimension and no data type
        ## z_in_0 = StreamArray(name='z_in_0')
        ## z_in_1 = StreamArray(name='z_in_1')
        ## z_out_0 = StreamArray(name='z_out_0')
        ## z_out_1 = StreamArray(name='z_out_1')
        ## def execute_list_of_np_func(v, list_of_np_func):
        ##     length = len(list_of_arrays)
        ##     input_array_0, input_array_1 = list_of_arrays
        ##     output_array_0 = np.zeros(length)
        ##     output_array_1 = np.zeros(length)
        ##     output_array_0 = input_array_0 + input_array_1
        ##     output_array_1 = input_array_0 - input_array_1
        ##     return [output_array_0, output_array_1]

        # Test list many with StreamArray and positive integer dimension and no data type
        dim = 2
        d_in_0 = StreamArray(name='d_in_0', dimension=dim)
        d_in_1 = StreamArray(name='d_in_1', dimension=dim)
        d_out_0 = StreamArray(name='d_out_0', dimension=dim)
        d_out_1 = StreamArray(name='d_out_1')

        def d_many(list_of_arrays):
            length = len(list_of_arrays)
            input_array_0, input_array_1 = list_of_arrays
            output_array_0 = input_array_0 + input_array_1
            output_array_1 = np.array([np.sum(input_array_0 + input_array_1)])
            return output_array_0, output_array_1

        d_multi_agent = multi_list(func=d_many,
                                   in_streams=[d_in_0, d_in_1],
                                   out_streams=[d_out_0, d_out_1],
                                   name='d_multi_agent')

        d_array_0_0 = np.array([[1.0, 2.0]])
        d_array_1_0 = np.array([[0.0, 10.0]])
        d_in_0.extend(d_array_0_0)
        run()
        d_in_1.extend(d_array_1_0)
        run()
        assert np.array_equal(d_out_0.recent[:d_out_0.stop],
                              np.array([[1.0, 12.0]]))
        assert np.array_equal(d_out_1.recent[:d_out_1.stop], np.array([13.0]))

        d_array_0_1 = np.array([[4.0, 8.0]])
        d_array_1_1 = np.array([[2.0, 4.0]])
        d_in_0.extend(d_array_0_1)
        d_in_1.extend(d_array_1_1)
        run()
        assert np.array_equal(d_out_0.recent[:d_out_0.stop],
                              np.array([[1.0, 12.0], [6.0, 12.0]]))
        assert np.array_equal(d_out_1.recent[:d_out_1.stop],
                              np.array([13.0, 18.0]))

        d_array_0_2 = np.array([[20.0, 30.0], [40.0, 50.0]])
        d_array_1_2 = np.array([[-10.0, -20.0]])
        d_in_0.extend(d_array_0_2)
        d_in_1.extend(d_array_1_2)
        run()
        assert np.array_equal(
            d_out_0.recent[:d_out_0.stop],
            np.array([[1.0, 12.0], [6.0, 12.0], [10.0, 10.0]]))
        assert np.array_equal(d_out_1.recent[:d_out_1.stop],
                              np.array([13.0, 18.0, 20.0]))

        # Test list many with StreamArray and tuple dimension and no data type
        dim = (2, 2)
        e_in_0 = StreamArray(name='e_in_0', dimension=dim)
        e_in_1 = StreamArray(name='e_in_1', dimension=dim)
        e_out_0 = StreamArray(name='e_out_0', dimension=dim)
        e_out_1 = StreamArray(name='e_out_1')

        def e_many(list_of_arrays):
            input_array_0, input_array_1 = list_of_arrays
            output_array_0 = input_array_0 + input_array_1
            output_array_1 = \
              np.array([np.sum(input_array_0[i]+ input_array_1[i])
                        for i in range(len(input_array_0))])
            return output_array_0, output_array_1

        e_multi_agent = multi_list(func=e_many,
                                   in_streams=[e_in_0, e_in_1],
                                   out_streams=[e_out_0, e_out_1],
                                   name='e_multi_agent')

        e_array_0_0 = np.array([[[10.0, 20.0], [30.0, 40.0]]])
        e_in_0.extend(e_array_0_0)
        e_array_1_0 = np.array([[[1.0, 2.0], [3.0, 4.0]]])
        e_in_1.extend(e_array_1_0)
        run()
        assert np.array_equal(e_out_0.recent[:e_out_0.stop],
                              np.array([[[11.0, 22.0], [33.0, 44.0]]]))
        assert np.array_equal(e_out_1.recent[:e_out_1.stop], np.array([110.0]))

        e_array_0_1 = np.array([[[11.0, 13.0], [17.0, 19.0]],
                                [[2.0, 4.0], [6.0, 8.0]]])
        e_in_0.extend(e_array_0_1)
        run()
        assert np.array_equal(e_out_0.recent[:e_out_0.stop],
                              np.array([[[11.0, 22.0], [33.0, 44.0]]]))
        assert np.array_equal(e_out_1.recent[:e_out_1.stop], np.array([110.0]))

        e_array_1_1 = np.array([[[1.0, 2.0], [3.0, 4.0]],
                                [[5.0, 6.0], [7.0, 8.0]]])
        e_in_1.extend(e_array_1_1)
        run()
        assert np.array_equal(
            e_out_0.recent[:e_out_0.stop],
            np.array([[[11.0, 22.0], [33.0, 44.0]], [[12.0, 15.0],
                                                     [20.0, 23.0]],
                      [[7.0, 10.0], [13.0, 16.0]]]))
        assert np.array_equal(e_out_1.recent[:e_out_1.stop],
                              np.array([110.0, 70.0, 46.0]))

        e_array_1_2 = np.array([[[11.0, 12.0], [13.0, 14.0]],
                                [[15.0, 16.0], [17.0, 18.0]]])
        e_in_1.extend(e_array_1_2)
        run()
        e_array_0_2 = np.array([[[-10.0, -11.0], [12.0, 16.0]],
                                [[-14.0, -15.0], [-16.0, -17.0]]])
        e_in_0.extend(e_array_0_2)
        run()
        assert np.array_equal(
            e_out_0.recent[:e_out_0.stop],
            np.array([[[11.0, 22.0], [33.0, 44.0]], [[12.0, 15.0],
                                                     [20.0, 23.0]],
                      [[7.0, 10.0], [13.0, 16.0]], [[1.0, 1.0], [25.0, 30.0]],
                      [[1.0, 1.0], [1.0, 1.0]]]))
        assert np.array_equal(e_out_1.recent[:e_out_1.stop],
                              np.array([110.0, 70.0, 46.0, 57.0, 4.0]))

        #------------------------------------------------------------------
        #------------------------------------------------------------------
        # Test args and kwargs
        #------------------------------------------------------------------
        #------------------------------------------------------------------
        # Test map

        def map_args(lst, multiplicand):
            return [multiplicand * element for element in lst]

        in_stream_map_args_stream = Stream('in_stream_map_args_stream')
        out_stream_map_args_stream = Stream('out_stream_map_args_stream')
        out_stream_map_kwargs_stream = Stream('out_stream_map_kwargs_stream')

        map_args_agent = map_list(map_args, in_stream_map_args_stream,
                                  out_stream_map_args_stream, None, None,
                                  'map_args_agent', 2)

        map_kwargs_agent = map_list(func=map_args,
                                    in_stream=in_stream_map_args_stream,
                                    out_stream=out_stream_map_kwargs_stream,
                                    name='map_args_agent',
                                    multiplicand=2)
        run()
        assert out_stream_map_args_stream.recent[:out_stream_map_args_stream.stop] == \
          []
        assert out_stream_map_kwargs_stream.recent[:out_stream_map_kwargs_stream.stop] == \
          []

        in_stream_map_args_stream.extend(list(range(5)))
        run()
        assert out_stream_map_args_stream.recent[:out_stream_map_args_stream.stop] == \
          [0, 2, 4, 6, 8]
        assert out_stream_map_kwargs_stream.recent[:out_stream_map_kwargs_stream.stop] == \
          [0, 2, 4, 6, 8]

        in_stream_map_args_stream.append(5)
        run()
        assert out_stream_map_args_stream.recent[:out_stream_map_args_stream.stop] == \
          [0, 2, 4, 6, 8, 10]
        assert out_stream_map_kwargs_stream.recent[:out_stream_map_kwargs_stream.stop] == \
          [0, 2, 4, 6, 8, 10]

        # Test list map on StreamArray (dimension is 0).
        a_stream_array_args = StreamArray(name='a_stream_array_args')
        b_stream_array_args = StreamArray(name='b_stream_array_args')
        c_stream_array_args_kwargs = StreamArray(
            name='c_stream_array_args_kwargs')

        def f_np_args(input_array_args, addend):
            return input_array_args + addend

        def f_np_args_kwargs(input_array_args_kwargs, multiplicand, addend):
            return input_array_args_kwargs * multiplicand + addend

        a_np_agent_args = map_list(f_np_args, a_stream_array_args,
                                   b_stream_array_args, None, None,
                                   'a_np_agent_args', 1)

        a_np_agent_args_kwargs = map_list(f_np_args_kwargs,
                                          a_stream_array_args,
                                          c_stream_array_args_kwargs,
                                          None,
                                          None,
                                          'a_np_agent_args_kwargs',
                                          2,
                                          addend=10)
        run()
        assert np.array_equal(
            b_stream_array_args.recent[:b_stream_array_args.stop],
            np.array([]))
        assert np.array_equal(
            c_stream_array_args_kwargs.recent[:c_stream_array_args_kwargs.
                                              stop], np.array([]))

        a_stream_array_args.extend(np.arange(5.0))
        run()
        assert np.array_equal(
            b_stream_array_args.recent[:b_stream_array_args.stop],
            np.arange(5.0) + 1)
        assert np.array_equal(
            c_stream_array_args_kwargs.recent[:c_stream_array_args_kwargs.
                                              stop],
            np.arange(5.0) * 2 + 10)

        a_stream_array_args.extend(np.arange(5.0, 10.0, 1.0))
        run()
        assert np.array_equal(
            b_stream_array_args.recent[:b_stream_array_args.stop],
            np.arange(10.0) + 1)
        assert np.array_equal(
            c_stream_array_args_kwargs.recent[:c_stream_array_args_kwargs.
                                              stop],
            np.arange(10.0) * 2 + 10)

        print('TEST OF OP (LISTS) IS SUCCESSFUL')
示例#21
0
def shimmer(original_sound_list, fs):
    """
    Paramters
    ---------
    original_sound_list: Input Sound
    fs: Sampling Frequency
    """

    delay = int(fs / 3)
    attenuation_vector = [0.6]
    input_stream = StreamArray('Input')
    heard = StreamArray('Output')
    pitch_out = StreamArray('PitchShift Output')

    echo = StreamArray(name='echo', initial_value=np.zeros(delay))
    # This below zip_map agent is the part that merges the output from Echo agent above and
    # The input stream
    zip_map(func=sum, in_streams=[input_stream, echo], out_stream=heard)

    # This below agent takes the output from the Pitch Shifter and then
    # Creates the Echo out of that sound that is fed as input to the zip_map agent above
    window_dot_product(in_stream=pitch_out,
                       out_stream=echo,
                       multiplicand_vector=attenuation_vector)

    window_size = 2**13
    h = 2**11
    n = 12
    factor = 2**(1.0 * n / 12.0)
    f = 1.0 / factor

    # Define the stretch agent
    y = StreamArray('y', dtype=np.int16)

    # The below is the Pitch Shift Agent
    stretch_object = Stretch(in_stream=heard,
                             out_stream=y,
                             factor=factor,
                             window_size=window_size,
                             h=h)

    sink_window(func=stretch_object.stretch,
                in_stream=heard,
                window_size=window_size + h,
                step_size=int(h * f))

    # Define the speedup agent.
    def f(window, out_stream):
        indices = np.arange(0, window_size, factor)
        out_stream.extend(
            np.int16(np.interp(indices, np.arange(window_size), window)) + 0.0)

    sink_window(func=f,
                in_stream=y,
                window_size=window_size,
                step_size=window_size,
                out_stream=pitch_out)

    input_stream.extend(original_sound_list)
    run()
    return recent_values(heard)
示例#22
0
    def test_sink(self):
        import numpy as np
        scheduler = Stream.scheduler

        ## ----------------------------------------------
        ## # Examples from AssembleSoftware website: KEEP!!
        ## ----------------------------------------------
        ## def print_index(v, state, delimiter):
        ##     print str(state) + delimiter + str(v)
        ##     return state+1 # next state
        ## s = Stream()
        ## sink(print_index, s, 0, delimiter=':')
        ## s.extend(list(range(100,105)))

        ## s = Stream()
        ## def print_index(v, state, delimiter):
        ##     print str(state) + delimiter + str(v)
        ##     return state+1 # next state
        ## sink(print_index, s, 0, delimiter=':')
        ## s.extend(list(range(100,105)))
        # Set up parameters for call to stream_to_list
        ## ----------------------------------------------
        ## # Finished examples from AssembleSoftware website
        ## ----------------------------------------------

        #-----------------------------------------------
        # Set up parameters for call to sink
        print_list = []
        print_list_for_array = []

        def print_index(v, state, print_list):
            print_list.append(str(state) + ':' + str(v))
            return state + 1  # next state

        s = Stream('s')
        s_array = StreamArray('s_array', dtype=int)

        #-----------------------------------------------
        # Call sink with initial state of 0
        sink(func=print_index, in_stream=s, state=0, print_list=print_list)
        sink(func=print_index,
             in_stream=s_array,
             state=0,
             print_list=print_list_for_array)

        s.extend(list(range(100, 103)))
        s_array.extend(np.arange(100, 103))
        scheduler.step()
        assert print_list == ['0:100', '1:101', '2:102']
        assert print_list_for_array == print_list
        s.extend(list(range(200, 203)))
        scheduler.step()
        assert print_list == [
            '0:100', '1:101', '2:102', '3:200', '4:201', '5:202'
        ]

        #-----------------------------------------------
        input_stream = Stream('input stream')
        input_stream_array = StreamArray('input stream array', dtype=int)
        output_list = []
        output_list_array = []

        # Call stream_to_list with no function
        stream_to_list(input_stream, output_list)
        stream_to_list(input_stream_array, output_list_array)
        # A test
        a_test_list = list(range(100, 105))
        a_test_array = np.arange(100, 105)
        input_stream.extend(a_test_list)
        input_stream_array.extend(a_test_array)
        scheduler.step()
        assert output_list == a_test_list
        assert output_list_array == a_test_list

        #-----------------------------------------------
        # test stream to list with a function
        def h(v, multiplier, addend):
            return v * multiplier + addend

        ss = Stream('ss')
        ss_array = StreamArray('ss_array', dtype=int)
        l = []
        l_array = []
        stream_to_list(ss, l, h, multiplier=2, addend=100)
        stream_to_list(in_stream=ss_array,
                       target_list=l_array,
                       element_function=h,
                       multiplier=2,
                       addend=100)
        test_list = [3, 23, 14]
        ss.extend(test_list)
        ss_array.extend(np.array(test_list))
        scheduler.step()
        assert l == [v * 2 + 100 for v in test_list]
        assert l_array == l

        #-----------------------------------------------
        # test stream to list with a function and state
        def h(v, state, multiplier, addend):
            return v * multiplier + addend + state, v + state

        ss = Stream('ss')
        ss_array = StreamArray('ss_array', dtype=int)
        l = []
        l_array = []
        stream_to_list(ss, l, h, 0, multiplier=2, addend=100)
        stream_to_list(in_stream=ss_array,
                       target_list=l_array,
                       element_function=h,
                       state=0,
                       multiplier=2,
                       addend=100)
        test_list = [3, 23, 14]
        ss.extend(test_list)
        ss_array.extend(np.array(test_list))
        scheduler.step()
        assert l == [106, 149, 154]
        assert l_array == l

        ss = Stream('ss')
        ss_array = StreamArray('ss_array', dtype=int)
        l = []
        l_array = []
        stream_to_list(ss, l, h, 0, multiplier=2, addend=100)
        stream_to_list(in_stream=ss_array,
                       target_list=l_array,
                       element_function=h,
                       state=0,
                       multiplier=2,
                       addend=100)
        test_list = list(range(5))
        ss.extend(test_list)
        ss_array.extend(np.array(test_list))
        scheduler.step()
        assert l == [100, 102, 105, 109, 114]
        assert l_array == l

        # Test sink
        # func operates on a single element of the single input stream and does
        # not return any value.
        def p(v, lst):
            lst.append(v)

        in_stream_sink = Stream('in_stream_sink')
        a_list = []
        b_list = []
        sink_agent = sink_element(func=p,
                                  in_stream=in_stream_sink,
                                  name='sink_agent',
                                  lst=a_list)
        sink(func=p, in_stream=in_stream_sink, lst=b_list)
        test_list = [1, 13, 29]
        in_stream_sink.extend(test_list)
        scheduler.step()
        assert a_list == test_list
        assert b_list == test_list

        # ------------------------------------
        # Test sink with state
        # func operates on a single element of the single input stream and state.
        # func does not return any value.

        def p_s(element, state, lst, stream_name):
            lst.append([stream_name, element])
            return state + 1

        in_stream_sink_with_state = Stream('s')
        c_list = []
        sink_with_state_agent = sink_element(
            func=p_s,
            in_stream=in_stream_sink_with_state,
            state=0,
            name='sink_with_state_agent',
            lst=c_list,
            stream_name='s')

        #------------------------------------------------------------------------------
        # Test sink as a function with state
        d_list = []
        sink(p_s,
             in_stream_sink_with_state,
             state=0,
             lst=d_list,
             stream_name='s')
        in_stream_sink_with_state.extend(list(range(2)))
        scheduler.step()
        assert c_list == [['s', 0], ['s', 1]]
        assert d_list == c_list

        # ------------------------------------
        # Test sink with side effect
        # func operates on a single element of the single input stream and state.
        # func does not return any value.

        def sink_with_side_effect_func(element, side_effect_list, f):
            side_effect_list.append(f(element))
            return None

        side_effect_list_0 = []
        side_effect_list_1 = []
        side_effect_list_2 = []

        def ff(element):
            return element * 2

        def fff(element):
            return element + 10

        stm = Stream('stm')

        sink_with_side_effect_agent_0 = sink_element(
            func=sink_with_side_effect_func,
            in_stream=stm,
            name='sink_with_side_effect_agent_0',
            side_effect_list=side_effect_list_0,
            f=ff)

        sink_with_side_effect_agent_1 = sink_element(
            func=sink_with_side_effect_func,
            in_stream=stm,
            name='sink_with_side_effect_agent_1',
            side_effect_list=side_effect_list_1,
            f=fff)

        def f_stateful(element, state):
            return element + state, element + state

        def f_stateful_2(element, state):
            return element * state, element + state

        target_stream_to_list_simple = []
        stream_to_list(stm, target_stream_to_list_simple)
        stream_to_list(in_stream=stm,
                       target_list=side_effect_list_2,
                       element_function=lambda v: 2 * v)
        target_stream_to_list_stateful = []
        stream_to_list(in_stream=stm,
                       target_list=target_stream_to_list_stateful,
                       element_function=f_stateful,
                       state=0)
        target_stream_to_list_stateful_2 = []
        stream_to_list(in_stream=stm,
                       target_list=target_stream_to_list_stateful_2,
                       element_function=f_stateful_2,
                       state=0)

        stream_to_file(stm, 'test1.txt')
        stream_to_file(stm, 'test2.txt', lambda v: 2 * v)
        stream_to_file(stm, 'test3.txt', f_stateful, state=0)

        is_py2 = sys.version[0] == '2'
        if is_py2:
            import Queue as queue
        else:
            import queue as queue
        queue_1 = queue.Queue()
        queue_2 = queue.Queue()
        queue_3 = queue.Queue()
        stream_to_queue(stm, queue_1)
        stream_to_queue(stm, queue_2, lambda v: 2 * v)
        stream_to_queue(stm, queue_3, f_stateful, 0)

        stm.extend(list(range(5)))
        scheduler.step()
        assert target_stream_to_list_stateful == [0, 1, 3, 6, 10]
        assert target_stream_to_list_stateful_2 == [0, 0, 2, 9, 24]
        assert side_effect_list_0 == [0, 2, 4, 6, 8]
        assert side_effect_list_1 == [10, 11, 12, 13, 14]
        assert side_effect_list_0 == side_effect_list_2
        assert target_stream_to_list_simple == list(range(5))

        with open('test1.txt') as the_file:
            file_contents_integers = [int(v) for v in (the_file.readlines())]
        assert file_contents_integers == recent_values(stm)

        with open('test2.txt') as the_file:
            file_contents_integers = [int(v) for v in (the_file.readlines())]
        assert file_contents_integers == [2 * v for v in recent_values(stm)]

        with open('test3.txt') as the_file:
            file_contents_integers = [int(v) for v in (the_file.readlines())]
        assert file_contents_integers == [0, 1, 3, 6, 10]
        os.remove('test1.txt')
        os.remove('test2.txt')
        os.remove('test3.txt')

        def h(v, multiplier, addend):
            return v * multiplier + addend

        ss = Stream()
        stream_to_file(ss, 'test4.txt', h, multiplier=2, addend=100)
        test_list = [3, 23, 14]
        ss.extend(test_list)
        scheduler.step()
        with open('test4.txt') as the_file:
            file_contents_integers = [int(v) for v in (the_file.readlines())]
        assert file_contents_integers == [v * 2 + 100 for v in test_list]
        os.remove('test4.txt')

        def h(v, state, multiplier, addend):
            return v * multiplier + addend + state, v + state

        ss = Stream()
        stream_to_file(ss, 'test5.txt', h, 0, multiplier=2, addend=100)
        test_list = [3, 23, 14]
        ss.extend(test_list)
        scheduler.step()
        with open('test5.txt') as the_file:
            file_contents_integers = [int(v) for v in (the_file.readlines())]
        scheduler.step()
        assert file_contents_integers == [106, 149, 154]
        os.remove('test5.txt')

        # ------------------------------------
        # Testing stream_to_queue
        def h(v, state, multiplier, addend):
            return v * multiplier + addend + state, v + state

        ss = Stream()
        queue_4 = queue.Queue()
        stream_to_queue(ss, queue_4, h, 0, multiplier=2, addend=100)
        test_list = [3, 23, 14]
        ss.extend(test_list)
        scheduler.step()
        queue_contents = []
        while not queue_4.empty():
            queue_contents.append(queue_4.get())
        assert queue_contents == [106, 149, 154]

        # Test with state and keyword arguments
        def h(v, state, multiplier, addend):
            return v * multiplier + addend + state, v + state

        ss = Stream()
        stream_to_queue(ss, queue_4, h, 0, multiplier=2, addend=100)
        test_list = [3, 23, 14]
        ss.extend(test_list)
        queue_contents = []
        scheduler.step()
        while not queue_4.empty():
            queue_contents.append(queue_4.get())
        assert queue_contents == [106, 149, 154]

        # Another test with state and keyword arguments
        ss = Stream()
        queue_5 = queue.Queue()
        stream_to_queue(ss, queue_5, h, 0, multiplier=2, addend=100)
        test_list = list(range(5))
        ss.extend(test_list)
        scheduler.step()
        queue_contents = []
        while not queue_5.empty():
            queue_contents.append(queue_5.get())
        assert queue_contents == [100, 102, 105, 109, 114]

        # Test stream_to_buffer
        s = Stream()
        buf = Buffer(max_size=10)
        stream_to_buffer(s, buf)
        test_list = list(range(5))
        s.extend(test_list)
        scheduler.step()
        assert buf.get_all() == test_list
        next_test = list(range(5, 10, 1))
        s.extend(next_test)
        scheduler.step()
        assert buf.read_all() == next_test
        assert buf.get_all() == next_test

        s = Stream('s')
        print_list = []

        def f(lst):
            print_list.extend(lst)

        sink_window(func=f, in_stream=s, window_size=4, step_size=2)
        s.extend(list(range(10)))
        scheduler.step()
        assert print_list == [0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9]

        s = Stream('s')
        print_list = []

        def f(lst):
            print_list.extend(lst)

        sink_list(func=f, in_stream=s)
        s.extend(list(range(10)))
        Stream.scheduler.step()
        assert print_list == list(range(10))

        import numpy as np
        t = StreamArray('t', dtype='int')
        print_list = []

        def f(lst):
            print_list.extend(lst)

        sink_list(func=f, in_stream=t)
        t.extend(np.arange(10))
        Stream.scheduler.step()
        assert print_list == list(range(10))
        print('TEST OF SINK IS SUCCESSFUL')