def test_PowerSpectrum(): ns_atm = NeutrinoSample() ns_atm.inputData(bgpath) gs = GALAXY_LIBRARY.get_sample('analy') if MAKE_TEST_PLOTS: figs = FigureDict() color = [ 'r', 'orange', 'limegreen', 'skyblue', 'mediumslateblue', 'purple', 'grey' ] figs.plot_cl('PowerSpectrum_atm', Defaults.ell, ns_atm.getPowerSpectrum(), xlabel="l", ylavel=r'$C_{l}$', figsize=(8, 6), colors=color) figs.plot('PowerSpectrum_atm', Defaults.ell, gs.analyCL[0:3 * Defaults.NSIDE], color='k', linestyle='--', lw=2) figs.save_all(testfigpath, 'pdf')
def astroEvent_galaxy(f_diff=1.): gs = GALAXY_LIBRARY.get_sample('analy') eg = EventGenerator(year='IC86-2012', astroModel='observed_numu_fraction') N_astro_north_obs = np.random.poisson(eg.nevts * 1 * eg.f_astro_north_truth) N_astro_north_exp = [ N_astro_north_obs[i] / np.sum(eg._astro_gen.prob_reject()[i] * gs.density) for i in range(Defaults.NEbin) ] astro_map = eg.astroEvent_galaxy(np.array(N_astro_north_exp), gs.density) file_utils.write_maps_to_fits(astro_map, astropath) if MAKE_TEST_PLOTS: figs = FigureDict() figs.mollview_maps('astro', astro_map) figs.save_all(testfigpath, 'pdf')
def atmBG(): eg = EventGenerator() eventmap = eg.atmEvent(1.) eventmap2 = np.zeros((Defaults.NEbin, Defaults.NPIXEL)) file_utils.write_maps_to_fits(eventmap, bgpath) for i in range(Defaults.NEbin): eventmap2[i] = eventmap[i] eventmap2[i][Defaults.idx_muon] = hp.UNSEEN mask = np.zeros(Defaults.NPIXEL) mask[Defaults.idx_muon] = 1. for i in range(Defaults.NEbin): test = np.ma.masked_array(eventmap[i], mask=mask) print(test.sum()) if MAKE_TEST_PLOTS: figs = FigureDict() figs.mollview_maps('eventmap_atm', eventmap2) figs.save_all(testfigpath, 'pdf')
def test_CrossCorrelation(): ns_astro = NeutrinoSample() ns_astro.inputData(astropath) gs = GALAXY_LIBRARY.get_sample('analy') w_cross = ns_astro.getCrossCorrelation(gs.overdensityalm) if MAKE_TEST_PLOTS: figs = FigureDict() color = [ 'r', 'orange', 'limegreen', 'skyblue', 'mediumslateblue', 'purple', 'grey' ] o_dict = figs.setup_figure('Wcross', xlabel="l", ylabel=r'$w$', figsize=(6, 8)) axes = o_dict['axes'] for i in range(Defaults.NEbin): axes.plot(Defaults.ell, gs.analyCL[0:3 * Defaults.NSIDE] * 10**(i * 2), color='k', lw=2) w_cross[i] *= 10**(i * 2) figs.plot_cl('Wcross', Defaults.ell, np.abs(w_cross), xlabel="l", ylabel=r'$C_{l}$', colors=color, ymin=1e-7, ymax=1e10, lw=3) figs.save_all(testfigpath, 'pdf')
def atmBG_coszenith(energyBin=0): eg = EventGenerator() N_coszenith = eg.atm_gen.coszenith()[energyBin] recovered_values = eg.atmBG_coszenith(int(np.sum(N_coszenith[:, 1])), energyBin) index = np.where(np.abs(recovered_values) > 1) if len(index) > 1: print(index, recovered_values[index]) if MAKE_TEST_PLOTS: figs = FigureDict() figkey = 'N_coszenith' + str(energyBin) o_dict = figs.setup_figure(figkey, xlabel=r'$\cos\,\theta$', ylabel='Number of counts', figsize=(8, 6)) fig = o_dict['fig'] axes = o_dict['axes'] axes.plot(N_coszenith[:, 0], N_coszenith[:, 1], lw=2, label='data') axes.hist(recovered_values, N_coszenith[:, 0], label='mock') fig.legend() figs.save_all(testfigpath, 'pdf')
labels = [] lvals = np.arange(384) for n_evt in n_events: syn_maps = hp_utils.vector_generate_counts_from_pdf( gg_density, n_evt, n_trial) pdf_map = gg_density * n_evt syn_cls = hp_utils.vector_cross_correlate_maps_normed( max_map, syn_maps, Defaults.NCL) syn_cls_means.append(syn_cls.mean(0)) syn_cls_stds.append(syn_cls.std(0)) #pdf_cls = hp.sphtfunc.anafast(pdf_map) #syn_cls_means.append(pdf_cls) #syn_cls_stds.append(pdf_cls*0.1) labels.append("Syn %i" % n_evt) #labels.append("Pdf %i" % n_evt) o_dict = figs.plot_cl("cl", lvals, syn_cls_means, ymax=10., ymin=1e-3, labels=labels) #yerr=syn_cls_stds, ymin=1e-20) testfigpath = os.path.join(Defaults.NUXGAL_PLOT_DIR, 'test') testfigfile = os.path.join(testfigpath, 'gal_cross_sig_v_nevt_norm') Utilityfunc.makedir_safe(testfigfile) figs.save_all(testfigfile, 'pdf')