示例#1
0
        network.t.record(neuron.h._ref_t)
    else:
        network.t = None

    ############################################################################
    # run simulation, gather results across all RANKs
    ############################################################################
    # Assert that connect routines has finished across RANKS before starting
    # main simulation procedure
    COMM.Barrier()
    if RANK == 0:
        print('running simulation....')
    if PSET.COMPUTE_LFP:
        SPIKES, SUMMED_OUTPUT, CURRENT_DIPOLE_MOMENT = network.simulate(
            electrode=electrode,
            rec_current_dipole_moment=PSET.COMPUTE_P,
            rec_pop_contributions=PSET.rec_pop_contributions,
            **PSET.NetworkSimulateArgs)
    else:
        SPIKES = network.simulate()
    # note: OUTPUT is a structured array if
    #   PSET.COMPUTE_LFP = True and PSET.COMPUTE_P is False and
    #   PSET.rec_pop_contributions is False.
    #   If PSET.COMPUTE_P == True and/or PSET.rec_pop_contributions == True,
    #   then output is a tuple (OUTPUT, current_dipole_moment)
    if RANK == 0:
        run_simulation_time = time() - tic
        print('Simulations finished in {} seconds'.format(run_simulation_time))
        logfile.write('simulation {}\n'.format(run_simulation_time))
    tic = time()
示例#2
0
        network.t = None

    
    
    ############################################################################
    # run simulation, gather results across all RANKs
    ############################################################################
    # Assert that connect routines has finished across RANKS before starting
    # main simulation procedure
    COMM.Barrier()
    if RANK == 0:
        print('running simulation....')
    if PSET.COMPUTE_LFP:
        SPIKES, SUMMED_OUTPUT, CURRENT_DIPOLE_MOMENT = network.simulate(
                                  electrode=electrode,
                                  rec_current_dipole_moment=PSET.COMPUTE_P,
                                  rec_pop_contributions=PSET.rec_pop_contributions,
                                  **PSET.NetworkSimulateArgs)
    else:
        SPIKES = network.simulate()
    # note: OUTPUT is a structured array if
    #   PSET.COMPUTE_LFP = True and PSET.COMPUTE_P is False and
    #   PSET.rec_pop_contributions is False.
    #   If PSET.COMPUTE_P == True and/or PSET.rec_pop_contributions == True,
    #   then output is a tuple (OUTPUT, current_dipole_moment)
    if RANK == 0:
        run_simulation_time = time() - tic
        print('Simulations finished in {} seconds'.format(run_simulation_time))
        logfile.write('simulation {}\n'.format(run_simulation_time))
    tic = time()
示例#3
0
                weightargs=weightArguments[i][j],
                minweight=minweight,
                delayfun=delayFunction,
                delayargs=delayArguments[i][j],
                mindelay=mindelay,
                multapsefun=multapseFunction,
                multapseargs=multapseArguments[i][j],
                syn_pos_args=synapsePositionArguments[i][j],
                )

    # set up extracellular recording device:
    electrode = RecExtElectrode(**electrodeParameters)

    # run simulation:
    SPIKES, OUTPUT, DIPOLEMOMENT = network.simulate(
        electrode=electrode,
        **networkSimulationArguments
    )

    # collect somatic potentials across all RANKs to RANK 0:
    if RANK == 0:
        somavs = []
        for i, name in enumerate(population_names):
            somavs.append([])
            somavs[i] += [cell.somav
                          for cell in network.populations[name].cells]
            for j in range(1, SIZE):
                somavs[i] += COMM.recv(source=j, tag=15)
    else:
        somavs = None
        for name in population_names:
            COMM.send([cell.somav for cell in network.populations[name].cells],
    if RANK == 0:
        network.t = neuron.h.Vector()
        network.t.record(neuron.h._ref_t)
    else:
        network.t = None

    ##########################################################################
    # run simulation, gather results across all RANKs
    ##########################################################################
    # Assert that connect routines has finished across RANKS before starting
    # main simulation procedure
    COMM.Barrier()
    if RANK == 0:
        print('running simulation....')
    SPIKES = network.simulate(probes=probes,
                              rec_pop_contributions=PSET.rec_pop_contributions,
                              **PSET.NetworkSimulateArgs)

    if RANK == 0:
        run_simulation_time = time() - tic
        print('Simulations finished in {} seconds'.format(run_simulation_time))
        logfile.write('simulation {}\n'.format(run_simulation_time))
    tic = time()

    ##########################################################################
    # save simulated output to file to allow for offline plotting
    ##########################################################################

    if RANK == 0:
        f = h5py.File(
            os.path.join(PSET.OUTPUTPATH,
示例#5
0
                multapseargs=multapseArguments[i][j],
                syn_pos_args=synapsePositionArguments[i][j],
                save_connections=False,
            )

    # set up extracellular recording device.
    # Here `cell` is set to None as handles to cell geometry is handled
    # internally
    electrode = RecExtElectrode(cell=None, **electrodeParameters)

    # set up recording of current dipole moments. Ditto with regards to
    # `cell` being set to None
    current_dipole_moment = CurrentDipoleMoment(cell=None)

    # run simulation:
    SPIKES = network.simulate(probes=[electrode, current_dipole_moment],
                              **networkSimulationArguments)

    # collect somatic potentials across all RANKs to RANK 0:
    if RANK == 0:
        somavs = []
    for i, name in enumerate(population_names):
        somavs_pop = None  # avoid undeclared variable
        for j, cell in enumerate(network.populations[name].cells):
            if j == 0:
                somavs_pop = cell.somav
            else:
                somavs_pop = np.vstack((somavs_pop, cell.somav))
        if RANK == 0:
            for j in range(1, SIZE):
                recv = COMM.recv(source=j, tag=15)
                if somavs_pop is None:
示例#6
0
文件: passive.py 项目: jkismul/EEG
                delayfun=delayFunction,
                delayargs=delayArguments[i][j],
                mindelay=mindelay,
                multapsefun=multapseFunction,
                multapseargs=multapseArguments[i][j],
                syn_pos_args=synapsePositionArguments[i][j],
                save_connections=False,  # Creates synapse_positions.h5
            )
    electrode = RecExtElectrode(**electrodeParameters)
    EEG_electrode_params = dict(x=0, y=0, z=90000., method="soma_as_point")
    EEG_electrode = RecExtElectrode(**EEG_electrode_params)

    # run simulation:
    SPIKES2, OUTPUT2, DIPOLEMOMENT2 = network.simulate(
        electrode=electrode,
        # electrode = EEG_electrode,
        **networkSimulationArguments,
    )

    # collect somatic potentials across all RANKs to RANK 0:
    if RANK == 0:
        somavs = []
        for i, name in enumerate(population_names):
            somavs.append([])
            somavs[i] += [
                cell.somav for cell in network.populations[name].cells
            ]
            for j in range(1, SIZE):
                somavs[i] += COMM.recv(source=j, tag=15)
    else:
        somavs = None
示例#7
0
                weightargs=weightArguments[i][j],
                minweight=minweight,
                delayfun=delayFunction,
                delayargs=delayArguments[i][j],
                mindelay=mindelay,
                multapsefun=multapseFunction,
                multapseargs=multapseArguments[i][j],
                syn_pos_args=synapsePositionArguments[i][j],
                )

    # set up extracellular recording device:
    electrode = RecExtElectrode(**electrodeParameters)

    # run simulation:
    SPIKES, OUTPUT, DIPOLEMOMENT = network.simulate(
        electrode=electrode,
        **networkSimulationArguments
    )

    # collect somatic potentials across all RANKs to RANK 0:
    if RANK == 0:
        somavs = []
        for i, name in enumerate(population_names):
            somavs.append([])
            somavs[i] += [cell.somav
                          for cell in network.populations[name].cells]
            for j in range(1, SIZE):
                somavs[i] += COMM.recv(source=j, tag=15)
    else:
        somavs = None
        for name in population_names:
            COMM.send([cell.somav for cell in network.populations[name].cells],