示例#1
0
        'fill_bunchbybunch_data_csvs/bunchbybunch_data_fill_%d.csv' % filln,
        verbose=False))

bint_thresh = 8e9
totint_thresh = 2e11

t_inter = 60.  #seconds

i_fig = 0
plt.close('all')
# Loop over beams
beam_col = ['b', 'r']
for beam in [1, 2]:
    print '\nPreparing plot beam %d...' % beam

    fbct = FBCT.FBCT(fill_dict, beam=beam)
    fbct_t_all, fbct_v_all = fbct.uniform_time()
    nslots = fbct_v_all.shape[1]

    # Remove time without beam
    mask_beam_presence = np.float_(fbct.totint > totint_thresh)

    # Identify fills within file
    i_start_fills = np.where(np.diff(mask_beam_presence) == 1)[0]
    i_stop_fills = np.where(np.diff(mask_beam_presence) == -1)[0] + 1
    n_fills = len(i_start_fills)

    # Loop over fills
    for fill_curr in xrange(n_fills):
        i_fig += 1
        i_start_fill = i_start_fills[fill_curr]
示例#2
0
import LHCMeasurementTools.LHC_BQM as BQM
import LHCMeasurementTools.LHC_BSRT as BSRT

import LHCMeasurementTools.LHC_Fills as Fills
from LHCMeasurementTools.LHC_Fill_LDB_Query import save_variables_and_pickle

import pickle
import os

csv_folder = 'fill_bunchbybunch_data_csvs'
filepath = csv_folder + '/bunchbybunch_data_fill'

if not os.path.isdir(csv_folder):
    os.mkdir(csv_folder)

fills_pkl_name = 'fills_and_bmodes.pkl'
with open(fills_pkl_name, 'rb') as fid:
    dict_fill_bmodes = pickle.load(fid)

saved_pkl = csv_folder + '/saved_fills.pkl'

varlist = []
varlist += FBCT.variable_list()
varlist += BQM.variable_list()
varlist += BSRT.variable_list()

save_variables_and_pickle(varlist=varlist,
                          file_path_prefix=filepath,
                          save_pkl=saved_pkl,
                          fills_dict=dict_fill_bmodes)
import LHCMeasurementTools.LHC_BQM as BQM
import LHCMeasurementTools.LHC_BSRT as BSRT

import LHCMeasurementTools.LHC_Fills as Fills
from LHCMeasurementTools.LHC_Fill_LDB_Query import save_variables_and_pickle

import pickle
import os

csv_folder = 'fill_bunchbybunch_data_csvs'
filepath =  csv_folder+'/bunchbybunch_data_fill'

if not os.path.isdir(csv_folder):
    os.mkdir(csv_folder)
    
fills_pkl_name = 'fills_and_bmodes.pkl'
with open(fills_pkl_name, 'rb') as fid:
    dict_fill_bmodes = pickle.load(fid)

saved_pkl = csv_folder+'/saved_fills.pkl'

varlist = []
varlist += FBCT.variable_list()
varlist += BQM.variable_list()
varlist += BSRT.variable_list()

save_variables_and_pickle(varlist=varlist, file_path_prefix=filepath, 
                          save_pkl=saved_pkl, fills_dict=dict_fill_bmodes)