示例#1
0
文件: case_DS1.py 项目: nksauter/LS49
    def job_runner(self, i_exp=0, spectra={}):
        from simtbx.nanoBragg import utils

        from LS49.adse13_187.case_data import retrieve_from_repo
        experiment_file = retrieve_from_repo(i_exp)

        # Fixed hyperparameters
        mosaic_spread_samples = 250
        ev_res = 1.5  # resolution of the downsample spectrum
        total_flux = 1e12  # total flux across channels
        beamsize_mm = 0.000886226925452758  # sqrt beam focal area
        spot_scale = 500.
        oversample = 1  # factor 1,2, or 3 probably enough
        verbose = 0  # leave as 0, unless debug
        shapetype = "gauss_argchk"

        #<><><><><><><><>
        os.environ[
            "NXMX_LOCAL_DATA"] = "/global/cfs/cdirs/m3562/der/master_files/run_000795.JF07T32V01_master.h5"
        expt = ExperimentListFactory.from_json_file(experiment_file,
                                                    check_format=True)[0]

        crystal = expt.crystal
        detector = expt.detector
        flat = True  # enforce that the camera has 0 thickness
        if flat:
            from dxtbx_model_ext import SimplePxMmStrategy
            for panel in detector:
                panel.set_px_mm_strategy(SimplePxMmStrategy())
                panel.set_mu(0)
                panel.set_thickness(0)
            assert detector[0].get_thickness() == 0

        alt_exper = ExperimentListFactory.from_json_file(
            '/global/cfs/cdirs/m3562/der/braggnanimous/top8_newlam2/expers/rank0/stg1_top_0_0.expt',
            check_format=False)[0]
        AC = alt_crystal = alt_exper.crystal

        beam = expt.beam
        spec = expt.imageset.get_spectrum(0)
        energies_raw = spec.get_energies_eV().as_numpy_array()
        weights_raw = spec.get_weights().as_numpy_array()
        energies, weights = utils.downsample_spectrum(energies_raw,
                                                      weights_raw,
                                                      method=1,
                                                      total_flux=total_flux,
                                                      ev_width=ev_res)

        device_Id = 0
        if self.gpu_channels_singleton is not None:
            device_Id = self.gpu_channels_singleton.get_deviceID()

        mn_energy = (energies * weights).sum() / weights.sum()
        mn_wave = utils.ENERGY_CONV / mn_energy
        print(
            "\n<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>"
        )
        print("\tBreakdown:")
        for shapetype in ["gauss_argchk"]:
            BEG = time()
            print(self.gpu_channels_singleton.get_deviceID(), "device",
                  shapetype)
            Famp_is_uninitialized = (
                self.gpu_channels_singleton.get_nchannels() == 0)
            if Famp_is_uninitialized:
                F_P1 = self.amplitudes
                for x in range(
                        1
                ):  # in this scenario, amplitudes are independent of lambda
                    self.gpu_channels_singleton.structure_factors_to_GPU_direct(
                        x, F_P1.indices(), F_P1.data())
            assert self.gpu_channels_singleton.get_nchannels() == 1

            # Variable parameters
            mosaic_spread = 0.00  # degrees
            Ncells_abc = 130, 30, 10  # medians from best stage1

            JF16M_numpy_array, TIME_BG, TIME_BRAGG, _ = multipanel_sim(
                CRYSTAL=alt_crystal,
                DETECTOR=detector,
                BEAM=beam,
                Famp=self.gpu_channels_singleton,
                energies=list(energies),
                fluxes=list(weights),
                background_wavelengths=[mn_wave],
                background_wavelength_weights=[1],
                background_total_flux=total_flux,
                background_sample_thick_mm=0.5,
                cuda=True,
                oversample=oversample,
                Ncells_abc=Ncells_abc,
                mos_dom=mosaic_spread_samples,
                mos_spread=mosaic_spread,
                beamsize_mm=beamsize_mm,
                profile=shapetype,
                show_params=False,
                time_panels=False,
                verbose=verbose,
                spot_scale_override=spot_scale,
                include_background=False,
                mask_file=mask_array)
            TIME_EXA = time() - BEG

            print(
                "\t\tExascale: time for bkgrd sim: %.4fs; Bragg sim: %.4fs; total: %.4fs"
                % (TIME_BG, TIME_BRAGG, TIME_EXA))
        print(
            "<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>\n"
        )
        return JF16M_numpy_array
示例#2
0
def tst_one_monkeypatch(i_exp, spectra, Fmerge, gpu_channels_singleton, rank,
                        params):
    print("IN MONKEYPATCH")
    from simtbx.nanoBragg import utils
    from dxtbx.model.experiment_list import ExperimentListFactory
    import numpy as np

    print("Experiment %d" % i_exp, flush=True)

    outfile = "boop_%d.hdf5" % i_exp
    from LS49.adse13_187.case_data import retrieve_from_repo
    experiment_file = retrieve_from_repo(i_exp)
    cuda = True  # False  # whether to use cuda
    omp = False
    ngpu_on_node = 1  # 8  # number of available GPUs
    mosaic_spread = 0.07  # degrees
    mosaic_spread_samples = params.mosaic_spread_samples  # number of mosaic blocks sampling mosaicity
    Ncells_abc = 30, 30, 10  # medians from best stage1
    ev_res = 1.5  # resolution of the downsample spectrum
    total_flux = 1e12  # total flux across channels
    beamsize_mm = 0.000886226925452758  # sqrt of beam focal area
    spot_scale = 500.  # 5.16324  # median from best stage1
    plot_spec = False  # plot the downsample spectra before simulating
    oversample = 1  # oversample factor, 1,2, or 3 probable enough
    panel_list = None  # integer list of panels, usefule for debugging
    rois_only = False  # only set True if you are running openMP, or CPU-only (i.e. not for GPU)
    include_background = params.include_background  # default is to add water background 100 mm thick
    verbose = 0  # leave as 0, unles debug
    flat = True  # enfore that the camera has 0 thickness
    #<><><><><><><><>
    # XXX new code
    El = ExperimentListFactory.from_json_file(experiment_file,
                                              check_format=True)
    exper = El[0]

    crystal = exper.crystal
    detector = exper.detector
    if flat:
        from dxtbx_model_ext import SimplePxMmStrategy
        for panel in detector:
            panel.set_px_mm_strategy(SimplePxMmStrategy())
            panel.set_mu(0)
            panel.set_thickness(0)

    beam = exper.beam

    # XXX new code
    spec = exper.imageset.get_spectrum(0)
    energies_raw, weights_raw = spec.get_energies_eV().as_numpy_array(), \
                                spec.get_weights().as_numpy_array()
    energies, weights = utils.downsample_spectrum(energies_raw,
                                                  weights_raw,
                                                  method=1,
                                                  total_flux=total_flux,
                                                  ev_width=ev_res)

    if flat:
        assert detector[0].get_thickness() == 0

    if panel_list is None:
        panel_list = list(range(len(detector)))

    pids_for_rank = panel_list
    device_Id = 0
    if gpu_channels_singleton is not None:
        device_Id = gpu_channels_singleton.get_deviceID()

    print("Rank %d will use device %d" % (rank, device_Id))
    show_params = False
    time_panels = (rank == 0)

    mn_energy = (energies * weights).sum() / weights.sum()
    mn_wave = utils.ENERGY_CONV / mn_energy
    print(
        "\n<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>")
    print("\tBreakdown:")
    for shapetype in ["gauss_argchk"]:
        BEG = time()
        print(gpu_channels_singleton.get_deviceID(), "device", shapetype)
        Famp_is_uninitialized = (gpu_channels_singleton.get_nchannels() == 0)
        if Famp_is_uninitialized:
            F_P1 = Fmerge.expand_to_p1()
            for x in range(
                    1
            ):  # in this scenario, amplitudes are independent of lambda
                gpu_channels_singleton.structure_factors_to_GPU_direct(
                    x, F_P1.indices(), F_P1.data())
        assert gpu_channels_singleton.get_nchannels() == 1

        JF16M_numpy_array, TIME_BG, TIME_BRAGG, _ = multipanel_sim(
            CRYSTAL=crystal,
            DETECTOR=detector,
            BEAM=beam,
            Famp=gpu_channels_singleton,
            energies=list(energies),
            fluxes=list(weights),
            background_wavelengths=[mn_wave],
            background_wavelength_weights=[1],
            background_total_flux=total_flux,
            background_sample_thick_mm=0.5,
            cuda=True,
            oversample=oversample,
            Ncells_abc=Ncells_abc,
            mos_dom=mosaic_spread_samples,
            mos_spread=mosaic_spread,
            mosaic_method="double_random",
            beamsize_mm=beamsize_mm,
            profile=shapetype,
            show_params=show_params,
            time_panels=time_panels,
            verbose=verbose,
            spot_scale_override=spot_scale,
            include_background=include_background,
            mask_file=params.mask_file,
            context=params.context)
        TIME_EXA = time() - BEG

        print(
            "\t\tExascale: time for bkgrd sim: %.4fs; Bragg sim: %.4fs; total: %.4fs"
            % (TIME_BG, TIME_BRAGG, TIME_EXA))
    print("<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>\n")

    if params.write_output:
        if params.write_experimental_data:
            data = exper.imageset.get_raw_data(0)
        img_sh = JF16M_numpy_array.shape
        assert img_sh == (256, 254, 254)
        num_output_images = 1 + int(params.write_experimental_data)
        print("Saving exascale output data of shape", img_sh)
        beam_dict = beam.to_dict()
        det_dict = detector.to_dict()
        try:
            beam_dict.pop("spectrum_energies")
            beam_dict.pop("spectrum_weights")
        except Exception:
            pass

        with utils.H5AttributeGeomWriter(
                os.path.join(params.log.outdir, "exap_%d.hdf5" % i_exp),
                image_shape=img_sh,
                num_images=num_output_images,
                detector=det_dict,
                beam=beam_dict,
                detector_and_beam_are_dicts=True) as writer:
            writer.add_image(JF16M_numpy_array)

            if params.write_experimental_data:
                data = [data[pid].as_numpy_array() for pid in panel_list]
                writer.add_image(data)
            print("Saved output to file %s" % ("exap_%d.hdf5" % i_exp))

    if not params.write_output:
        # ability to read in the special file format
        # note to end-user:  The special file format can be installed permanently into a
        #   developmental version of dials/cctbx:
        # dxtbx.install_format ./FormatHDF5AttributeGeometry.py --global # writes to build directory
        #   or alternatively to the user's account:
        # dxtbx.install_format ./FormatHDF5AttributeGeometry.py --user # writes to ~/.dxtbx
        from LS49.adse13_187.FormatHDF5AttributeGeometry import FormatHDF5AttributeGeometry as format_instance
        from LS49 import ls49_big_data
        filename = os.path.join(ls49_big_data, "adse13_228",
                                "exap_%d.hdf5" % i_exp)
        instance = format_instance(filename)
        reference = [D.as_numpy_array() for D in instance.get_raw_data()]
        print("reference length for %s is %d" %
              ("exap_%d.hdf5" % i_exp, len(reference)))

        # assertion on equality:
        abs_diff = np.abs(JF16M_numpy_array - reference).max()
        assert np.allclose(JF16M_numpy_array, reference), \
        "max per-pixel difference: %f photons, experiment %d"%(abs_diff,i_exp)
示例#3
0
  def job_runner(self,i_exp=0,spectra={}):
    from simtbx.nanoBragg import utils

    from LS49.adse13_187.case_data import retrieve_from_repo
    experiment_file = retrieve_from_repo(i_exp)

    # Fixed hyperparameters
    mosaic_spread_samples = 500
    ev_res = 1.5  # resolution of the downsample spectrum
    total_flux = 1e12  # total flux across channels
    beamsize_mm = 0.000886226925452758 # sqrt beam focal area
    spot_scale = 500.
    oversample = 1  # factor 1,2, or 3 probably enough
    include_background = False
    verbose = 0  # leave as 0, unless debug
    shapetype = "gauss_argchk"

    #<><><><><><><><>
    os.environ["NXMX_LOCAL_DATA"]="/global/cfs/cdirs/m3562/der/master_files/run_000795.JF07T32V01_master.h5"
    expt = ExperimentListFactory.from_json_file(
      experiment_file, check_format=True)[0]

    crystal = expt.crystal
    detector = expt.detector
    flat = True  # enforce that the camera has 0 thickness
    if flat:
        from dxtbx_model_ext import SimplePxMmStrategy
        for panel in detector:
            panel.set_px_mm_strategy(SimplePxMmStrategy())
            panel.set_mu(0)
            panel.set_thickness(0)
        assert detector[0].get_thickness() == 0


    beam = expt.beam
    spec = expt.imageset.get_spectrum(0)
    energies_raw = spec.get_energies_eV().as_numpy_array()
    weights_raw = spec.get_weights().as_numpy_array()
    energies, weights = utils.downsample_spectrum(energies_raw, weights_raw, method=1, total_flux=total_flux, ev_width=ev_res)

    device_Id = 0
    if self.gpu_channels_singleton is not None:
      device_Id = self.gpu_channels_singleton.get_deviceID()

    mn_energy = (energies*weights).sum() / weights.sum()
    mn_wave = utils.ENERGY_CONV / mn_energy
    print("\n<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>")
    print("\tBreakdown:")
    for shapetype in ["gauss_argchk"]:
      BEG=time()
      print (self.gpu_channels_singleton.get_deviceID(),"device",shapetype)
      Famp_is_uninitialized = ( self.gpu_channels_singleton.get_nchannels() == 0 )
      if Famp_is_uninitialized:
        from iotbx.reflection_file_reader import any_reflection_file
        from LS49 import ls49_big_data
        merge_file = os.path.join(ls49_big_data,"adse13_228","cyto_init_merge.mtz")
        self.merged_amplitudes = any_reflection_file(merge_file).as_miller_arrays()[0].as_amplitude_array()

        F1 = self.merged_amplitudes.expand_to_p1()
        F2 = self.amplitudes.expand_to_p1() # takes care of both transform to asu & expand

        if False: # make sure that mtz file (F1) and strong spots (self.amplitudes) are roughly correlated
          from matplotlib import pyplot as plt
          from cctbx import miller
          matches = miller.match_indices( F1.indices(), self.amplitudes.indices() )
          sel0 = flex.size_t([p[0] for p in matches.pairs()])
          sel1 = flex.size_t([p[1] for p in matches.pairs()])
          data0 = F1.data().select(sel0)
          data1 = self.amplitudes.data().select(sel1)
          plt.plot(data0, data1, 'r.')
          plt.show() # yes, the two are very roughly correlated
          # end of test

        #F_P1 = F1 # legacy, use a merged mtz file
        #F_P1 = F2 # this one way absolutely wrong! way too many predictions, beyond the strong spots
        F_P1 = F1
        for x in range(1):  # in this scenario, amplitudes are independent of lambda
          self.gpu_channels_singleton.structure_factors_to_GPU_direct(
          x, F_P1.indices(), F_P1.data())
      assert self.gpu_channels_singleton.get_nchannels() == 1

      # Variable parameters
      mosaic_spread = 0.07 # degrees
      Ncells_abc = 30, 30, 10

      JF16M_numpy_array, TIME_BG, TIME_BRAGG, _ = multipanel_sim(
        CRYSTAL=crystal, DETECTOR=detector, BEAM=beam,
        Famp = self.gpu_channels_singleton,
        energies=list(energies), fluxes=list(weights),
        background_wavelengths=[mn_wave], background_wavelength_weights=[1],
        background_total_flux=total_flux,background_sample_thick_mm=0.5,
        cuda=True,
        oversample=oversample, Ncells_abc=Ncells_abc,
        mos_dom=mosaic_spread_samples, mos_spread=mosaic_spread,
        beamsize_mm=beamsize_mm,
        profile=shapetype,
        show_params=False,
        time_panels=False, verbose=verbose,
        spot_scale_override=spot_scale,
        include_background=include_background,
        mask_file=mask_array)
      TIME_EXA = time()-BEG

      print("\t\tExascale: time for bkgrd sim: %.4fs; Bragg sim: %.4fs; total: %.4fs" % (TIME_BG, TIME_BRAGG, TIME_EXA))
    print("<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>\n")
    return JF16M_numpy_array
示例#4
0
def tst_one(i_exp,spectra,Fmerge,gpu_channels_singleton,rank,params):
    from simtbx.nanoBragg import utils
    from dxtbx.model.experiment_list import ExperimentListFactory
    import numpy as np

    print("Experiment %d" % i_exp, flush=True)
    sys.stdout.flush()

    outfile = "boop_%d.hdf5" % i_exp
    from LS49.adse13_187.case_data import retrieve_from_repo
    experiment_file = retrieve_from_repo(i_exp)
    # Not used # refl_file = "/global/cfs/cdirs/m3562/der/run795/top_%d.refl" % i_exp
    cuda = True  # False  # whether to use cuda
    omp = False
    ngpu_on_node = 1 # 8  # number of available GPUs
    mosaic_spread = 0.07  # degrees
    mosaic_spread_samples = params.mosaic_spread_samples # number of mosaic blocks sampling mosaicity
    Ncells_abc = 30, 30, 10  # medians from best stage1
    ev_res = 1.5  # resolution of the downsample spectrum
    total_flux = 1e12  # total flux across channels
    beamsize_mm = 0.000886226925452758  # sqrt of beam focal area
    spot_scale = 500. # 5.16324  # median from best stage1
    plot_spec = False  # plot the downsample spectra before simulating
    oversample = 1  # oversample factor, 1,2, or 3 probable enough
    panel_list = None  # integer list of panels, usefule for debugging
    rois_only = False  # only set True if you are running openMP, or CPU-only (i.e. not for GPU)
    include_background = params.include_background   # default is to add water background 100 mm thick
    verbose = 0  # leave as 0, unles debug
    flat = True  # enfore that the camera has 0 thickness
    #<><><><><><><><>
    # XXX new code
    El = ExperimentListFactory.from_json_file(experiment_file,
                                              check_format=True)
    exper = El[0]

    crystal = exper.crystal
    detector = exper.detector
    if flat:
        from dxtbx_model_ext import SimplePxMmStrategy
        for panel in detector:
            panel.set_px_mm_strategy(SimplePxMmStrategy())
            panel.set_mu(0)
            panel.set_thickness(0)

    beam = exper.beam

    # XXX new code
    spec = exper.imageset.get_spectrum(0)
    energies_raw, weights_raw = spec.get_energies_eV().as_numpy_array(), \
                                spec.get_weights().as_numpy_array()
    energies, weights = utils.downsample_spectrum(energies_raw, weights_raw, method=1, total_flux=total_flux,
                                                  ev_width=ev_res)

    if flat:
        assert detector[0].get_thickness() == 0

    if panel_list is None:
        panel_list = list(range(len(detector)))

    pids_for_rank = panel_list
    device_Id = 0
    if gpu_channels_singleton is not None:
      device_Id = gpu_channels_singleton.get_deviceID()

    print("Rank %d will use device %d" % (rank, device_Id))
    show_params = False
    time_panels = (rank == 0)

    mn_energy = (energies*weights).sum() / weights.sum()
    mn_wave = utils.ENERGY_CONV / mn_energy

    if params.use_exascale_api:
      BEG=time()
      print (gpu_channels_singleton.get_deviceID(),"device")
      Famp_is_uninitialized = ( gpu_channels_singleton.get_nchannels() == 0 ) # uninitialized
      if Famp_is_uninitialized:
        F_P1 = Fmerge.expand_to_p1()
        for x in range(1):  # in this scenario, amplitudes are independent of lambda
          gpu_channels_singleton.structure_factors_to_GPU_direct(
          x, F_P1.indices(), F_P1.data())
      assert gpu_channels_singleton.get_nchannels() == 1

      JF16M_numpy_array, TIME_BG, TIME_BRAGG, _ = multipanel_sim(
        CRYSTAL=crystal, DETECTOR=detector, BEAM=beam,
        Famp = gpu_channels_singleton,
        energies=list(energies), fluxes=list(weights),
        background_wavelengths=[mn_wave], background_wavelength_weights=[1],
        background_total_flux=total_flux,background_sample_thick_mm=0.5,
        cuda=True,
        oversample=oversample, Ncells_abc=Ncells_abc,
        mos_dom=mosaic_spread_samples, mos_spread=mosaic_spread,
        mosaic_method=params.mosaic_method,
        beamsize_mm=beamsize_mm,show_params=show_params,
        time_panels=time_panels, verbose=verbose,
        spot_scale_override=spot_scale,
        include_background=include_background,
        mask_file=params.mask_file)
      TIME_EXA = time()-BEG
      print ("Exascale time",TIME_EXA)
      if params.write_experimental_data:
        data = exper.imageset.get_raw_data(0)

      tsave = time()
      img_sh = JF16M_numpy_array.shape
      assert img_sh == (256,254,254)
      num_output_images = 1 + int(params.write_experimental_data)
      print("Saving exascale output data of shape", img_sh)
      beam_dict = beam.to_dict()
      det_dict = detector.to_dict()
      try:
        beam_dict.pop("spectrum_energies")
        beam_dict.pop("spectrum_weights")
      except Exception: pass
# XXX no longer have two separate files
      if params.write_output:
       with utils.H5AttributeGeomWriter("exap_%d.hdf5"%i_exp,
                                image_shape=img_sh, num_images=num_output_images,
                                detector=det_dict, beam=beam_dict,
                                detector_and_beam_are_dicts=True) as writer:
        writer.add_image(JF16M_numpy_array)

        if params.write_experimental_data:
            data = [data[pid].as_numpy_array() for pid in panel_list]
            writer.add_image(data)

       tsave = time() - tsave
       print("Saved output to file %s. Saving took %.4f sec" % ("exap_%d.hdf5"%i_exp, tsave, ))

    BEG2 = time()
    #optional background
    TIME_BG2 = time()
    backgrounds = {pid: None for pid in panel_list}
    if include_background:
        backgrounds = {pid: utils.sim_background( # default is for water
                detector, beam, wavelengths=[mn_wave], wavelength_weights=[1],
                total_flux=total_flux, Fbg_vs_stol=water,
                pidx=pid, beam_size_mm=beamsize_mm, sample_thick_mm=0.5)
            for pid in pids_for_rank}
    TIME_BG2 = time()-TIME_BG2

    TIME_BRAGG2 = time()
    pid_and_pdata = utils.flexBeam_sim_colors(
      CRYSTAL=crystal, DETECTOR=detector, BEAM=beam,
      energies=list(energies), fluxes=list(weights), Famp=Fmerge,
      pids=pids_for_rank, cuda=cuda, device_Id=device_Id,
      oversample=oversample, Ncells_abc=Ncells_abc, verbose=verbose,
      time_panels=time_panels, show_params=show_params, spot_scale_override=spot_scale,
      mos_dom=mosaic_spread_samples, mos_spread=mosaic_spread, beamsize_mm=beamsize_mm,
      background_raw_pixels=backgrounds, include_noise=False, rois_perpanel=None)
    TIME_BRAGG2 = time()-TIME_BRAGG2
    pid_and_pdata = sorted(pid_and_pdata, key=lambda x: x[0])
    _, pdata = zip(*pid_and_pdata)
    TIME_VINTAGE = time()-BEG2

    print("\n<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>")
    print("\tBreakdown:")
    if params.use_exascale_api:
        print("\t\tExascale: time for bkgrd sim: %.4fs; Bragg sim: %.4fs; total: %.4fs" % (TIME_BG, TIME_BRAGG, TIME_EXA))
    print("\t\tVintage:  time for bkgrd sim: %.4fs; Bragg sim: %.4fs; total: %.4fs" % (TIME_BG2, TIME_BRAGG2, TIME_VINTAGE))
    print("<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>\n")

    if params.test_pixel_congruency and params.use_exascale_api:
      abs_diff = np.abs(np.array(pdata) - JF16M_numpy_array).max()
      assert np.allclose(pdata, JF16M_numpy_array), "max per-pixel difference: %f photons"%abs_diff
      print("pixel congruency: OK!")

    # pdata is a list of 256 2D numpy arrays, now.

    if len(panel_list) != len(detector):
        print("Cant save partial detector image, exiting..")
        exit()
        #from dxtbx.model import Detector
        #new_det = Detector()
        #for pid in panel_list:
        #    new_det.add_panel(detector[pid])
        #detector = new_det
    if params.write_experimental_data:
        data = exper.imageset.get_raw_data(0)

    tsave = time()
    pdata = np.array(pdata) # now pdata is a numpy array of shape 256,254,254
    img_sh = pdata.shape
    num_output_images = 3 + int(params.write_experimental_data)
    print("BOOPZ: Rank=%d ; i_exp=%d, RAM usage=%f" % (rank, i_exp,get_memory_usage()/1e6 ))
    beam_dict = beam.to_dict()
    det_dict = detector.to_dict()
    try:
      beam_dict.pop("spectrum_energies")
      beam_dict.pop("spectrum_weights")
    except Exception: pass
    if params.write_output:
      print("Saving output data of shape", img_sh)
      with utils.H5AttributeGeomWriter(outfile, image_shape=img_sh, num_images=num_output_images,
                                detector=det_dict, beam=beam_dict,
                                detector_and_beam_are_dicts=True) as writer:
        writer.add_image(JF16M_numpy_array/pdata)
        writer.add_image(JF16M_numpy_array)
        writer.add_image(pdata)

        if params.write_experimental_data:
            data = [data[pid].as_numpy_array() for pid in panel_list]
            writer.add_image(data)

      tsave = time() - tsave
      print("Saved output to file %s. Saving took %.4f sec" % (outfile, tsave, ))
示例#5
0
def tst_one_monkeypatch(i_exp, spectra, Fmerge, gpu_channels_singleton, rank,
                        params):
    print("IN MONKEYPATCH")
    from simtbx.nanoBragg import utils
    from dxtbx.model.experiment_list import ExperimentListFactory
    import numpy as np

    print("Experiment %d" % i_exp, flush=True)

    outfile = "boop_%d.hdf5" % i_exp
    from LS49.adse13_187.case_data import retrieve_from_repo
    experiment_file = retrieve_from_repo(i_exp)
    cuda = True  # False  # whether to use cuda
    omp = False
    ngpu_on_node = 1  # 8  # number of available GPUs
    mosaic_spread = 0.07  # degrees
    mosaic_spread_samples = params.mosaic_spread_samples  # number of mosaic blocks sampling mosaicity
    Ncells_abc = 30, 30, 10  # medians from best stage1
    ev_res = 1.5  # resolution of the downsample spectrum
    total_flux = 1e12  # total flux across channels
    beamsize_mm = 0.000886226925452758  # sqrt of beam focal area
    spot_scale = 500.  # 5.16324  # median from best stage1
    plot_spec = False  # plot the downsample spectra before simulating
    oversample = 1  # oversample factor, 1,2, or 3 probable enough
    panel_list = None  # integer list of panels, usefule for debugging
    rois_only = False  # only set True if you are running openMP, or CPU-only (i.e. not for GPU)
    include_background = params.include_background  # default is to add water background 100 mm thick
    verbose = 0  # leave as 0, unles debug
    flat = True  # enfore that the camera has 0 thickness
    #<><><><><><><><>
    # XXX new code
    El = ExperimentListFactory.from_json_file(experiment_file,
                                              check_format=True)
    exper = El[0]

    crystal = exper.crystal
    detector = exper.detector
    if flat:
        from dxtbx_model_ext import SimplePxMmStrategy
        for panel in detector:
            panel.set_px_mm_strategy(SimplePxMmStrategy())
            panel.set_mu(0)
            panel.set_thickness(0)

    beam = exper.beam

    # XXX new code
    spec = exper.imageset.get_spectrum(0)
    energies_raw, weights_raw = spec.get_energies_eV().as_numpy_array(), \
                                spec.get_weights().as_numpy_array()
    energies, weights = utils.downsample_spectrum(energies_raw,
                                                  weights_raw,
                                                  method=1,
                                                  total_flux=total_flux,
                                                  ev_width=ev_res)

    if flat:
        assert detector[0].get_thickness() == 0

    if panel_list is None:
        panel_list = list(range(len(detector)))

    pids_for_rank = panel_list
    device_Id = 0
    if gpu_channels_singleton is not None:
        device_Id = gpu_channels_singleton.get_deviceID()

    print("Rank %d will use device %d" % (rank, device_Id))
    show_params = False
    time_panels = (rank == 0)

    mn_energy = (energies * weights).sum() / weights.sum()
    mn_wave = utils.ENERGY_CONV / mn_energy
    jf16m_numpy_array = {}
    from_gpu_amplitudes_cuda = {}
    print(
        "\n<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>")
    print("\tBreakdown:")
    for shapetype in ["gauss_argchk", "gauss"]:
        BEG = time()
        print(gpu_channels_singleton.get_deviceID(), "device", shapetype)
        Famp_is_uninitialized = (gpu_channels_singleton.get_nchannels() == 0)
        if Famp_is_uninitialized:
            F_P1 = Fmerge.expand_to_p1()
            for x in range(
                    1
            ):  # in this scenario, amplitudes are independent of lambda
                gpu_channels_singleton.structure_factors_to_GPU_direct(
                    x, F_P1.indices(), F_P1.data())
        assert gpu_channels_singleton.get_nchannels() == 1

        JF16M_numpy_array, TIME_BG, TIME_BRAGG, _ = multipanel_sim(
            CRYSTAL=crystal,
            DETECTOR=detector,
            BEAM=beam,
            Famp=gpu_channels_singleton,
            energies=list(energies),
            fluxes=list(weights),
            background_wavelengths=[mn_wave],
            background_wavelength_weights=[1],
            background_total_flux=total_flux,
            background_sample_thick_mm=0.5,
            cuda=True,
            oversample=oversample,
            Ncells_abc=Ncells_abc,
            mos_dom=mosaic_spread_samples,
            mos_spread=mosaic_spread,
            beamsize_mm=beamsize_mm,
            profile=shapetype,
            show_params=show_params,
            time_panels=time_panels,
            verbose=verbose,
            spot_scale_override=spot_scale,
            include_background=include_background,
            context=params.context)
        TIME_EXA = time() - BEG
        jf16m_numpy_array[shapetype] = JF16M_numpy_array
        from_gpu_amplitudes_cuda[shapetype] = TIME_BRAGG

        print(
            "\t\tExascale: time for bkgrd sim: %.4fs; Bragg sim: %.4fs; total: %.4fs"
            % (TIME_BG, TIME_BRAGG, TIME_EXA))
    ratio = from_gpu_amplitudes_cuda["gauss"] / from_gpu_amplitudes_cuda[
        "gauss_argchk"]
    print(
        "<><><><><><><><><ratio<%.2f><><><><><><><><><><><><><><><><><><><>\n"
        % (ratio))

    # assertion on elapsed time:
    assert ratio > 1.0, "ratio is %.3f, experiment %d" % (ratio, i_exp)

    # assertion on equality:
    abs_diff = np.abs(jf16m_numpy_array["gauss"] - \
                      jf16m_numpy_array["gauss_argchk"]).max()
    assert np.allclose(jf16m_numpy_array["gauss"], \
                       jf16m_numpy_array["gauss_argchk"]), \
    "max per-pixel difference: %f photons, experiment %d"%(abs_diff,i_exp)