#for c in range(nsb): # if (sb.mask[c]&MaskCode.Valid == MaskCode.Valid and sb.mask[c]&MaskCode.Foreground == MaskCode.Foreground): # values[c]=0. v0 = values.set_selected(values <= 0, 0.) v1 = v0.set_selected(v0 > 255, 255) v2 = (256. - v1) / 256. np_v2 = np.ndarray(shape=( B[3] - B[2], B[1] - B[0], ), dtype=np.float32, buffer=v2.as_numpy_array()) # insert code here to estimate the partiality response pr_value = get_partiality_response(key, one_index, spectra_simulation=SS, ROI=ROI) print("NSB2", nsb) for c in range(nsb): intensity_lookup_1[(int(sb.coords()[c][1]), int(sb.coords()[c][0]))] = pr_value[c] assert len(intensity_lookup_1) == len(intensity_lookup) assert len(pr_value) == len(sb.data) values_1 = pr_value # sb.data # ADU v0_1 = values_1.set_selected(values_1 <= 0, 0.) v1_1 = v0_1.set_selected(v0_1 > 255, 255) v2_1 = (256. - v1_1) / 256. np_v2_1 = np.ndarray(shape=( B[3] - B[2], B[1] - B[0],
# intensity_lookup consists of the "observed" data from shoeboxes v0 = values.set_selected(values <= 0, 0.) v1 = v0.set_selected(v0 > 255, 255) v2 = (256. - v1) / 256. np_v2 = np.ndarray(shape=( B[3] - B[2], B[1] - B[0], ), dtype=np.float32, buffer=v2.as_numpy_array()) # insert code here to estimate the partiality response PRD = get_partiality_response( key, hkl[x], spectra_simulation=transmitted_info["spectra"], ROI=ROI) pr_value = PRD["roi_pixels"] miller = PRD["miller"] intensity = PRD["intensity"] for c in range(nsb): intensity_lookup_1[(int(sb.coords()[c][1]), int(sb.coords()[c][0]))] = pr_value[c] assert len(intensity_lookup_1) == len(intensity_lookup) assert len(pr_value) == len(sb.data) # intensity_lookup_1 consists of partiality model data from posthoc simulator (partiality x Icalc) values_1 = pr_value # sb.data # ADU v0_1 = values_1.set_selected(values_1 <= 0, 0.)