示例#1
0
文件: bsh.py 项目: rinabuoy/curvature
    def _build_data_set(self, to_file=False):

        list_of_dfs = []
        df_patient_data = pd.read_excel(os.path.join(patient_data_path, 'PREDICT-AF_Measurements.xlsx'),  # AduHeart_PatientData_Relevant
                                        index_col='patient_ID', header=0)

        for curv_file in self.files:
            print('case: {}'.format(curv_file))
            ven = Trace(self.source_path, case_name=curv_file, view=self.view, interpolate=self.interpolate_traces)
            list_of_dfs.append(ven.get_biomarkers())

        self.df_all_cases = pd.concat(list_of_dfs)

        self.df_all_cases.index.name = 'ID'
        self.df_all_cases['patient_ID'] = self.df_all_cases.index.map({k: k.split('_')[0] for k
                                                                       in self.df_all_cases.index})
        print(self.df_all_cases)
        print(df_patient_data)
        self.df_all_cases = self.df_all_cases.join(df_patient_data.SB, how='inner', on='patient_ID')
        self.df_all_cases = self.df_all_cases.set_index(['patient_ID', self.df_all_cases.index])

        self.df_all_cases['min_index'] = np.abs(self.df_all_cases.min_delta * self.df_all_cases['min'])
        self.df_all_cases['min_index_ED'] = np.abs(self.df_all_cases.min_delta_ED * self.df_all_cases.min_ED)
        self.df_all_cases['curv_len_inter'] = np.abs(self.df_all_cases.min_ED * self.df_all_cases.trace_length_ED)

        print(self.df_all_cases)
        if to_file:
            data_set_output_dir = check_directory(os.path.join(self.output_path, 'output_EDA'))
            self.df_all_cases.to_csv(os.path.join(data_set_output_dir, self.indices_file))
            print('master table saved')
示例#2
0
文件: bsh.py 项目: rinabuoy/curvature
    def save_curvatures(self):

        _output_path = check_directory(os.path.join(self.output_path, 'curvatures'))

        for case in self.files:
            ven = Trace(self.source_path, case_name=case, view=self.view, interpolate=self.interpolate_traces)
            print(ven.id)
            pd.DataFrame(ven.ventricle_curvature).to_csv(os.path.join(_output_path, ven.id+'.csv'))
示例#3
0
文件: bsh.py 项目: rinabuoy/curvature
 def _set_paths_and_files(self, view=None, output_path=''):
     # self.view = view
     if view is not None:  # Read specified view data
         self.files = glob.glob(os.path.join(self.source_path, self.view, '*.CSV'))
     else:  # Read all CSVs in the source directory
         self.files = glob.glob(os.path.join(self.source_path, '*.CSV'))
     self.files.sort()
     if not output_path == '':
         self.output_path = check_directory(output_path)
示例#4
0
文件: bsh.py 项目: rinabuoy/curvature
    def plot_curvatures(self, coloring_scheme='curvature', plot_mean=False):

        _source_path = os.path.join(self.source_path, self.view)
        if plot_mean:
            _output_path = check_directory(os.path.join(self.output_path, 'output_curvature', 'mean'))
        else:
            _output_path = check_directory(os.path.join(self.output_path, 'output_curvature'))

        for case in self.files:
            ven = Trace(self.source_path, case_name=case, view=self.view, interpolate=self.interpolate_traces)
            print(ven.id)
            print('Points: {}'.format(ven.number_of_points))
            plot_tool = PlottingCurvature(source=_source_path,
                                          output_path=_output_path,
                                          ventricle=ven)
            if plot_mean:
                plot_tool.plot_mean_curvature()
            else:
                plot_tool.plot_all_frames(coloring_scheme=coloring_scheme)
                plot_tool.plot_heatmap()
示例#5
0
文件: bsh.py 项目: rinabuoy/curvature
    def _plot_master(self):

        if self.df_master is None:
            self._try_get_data(master_table=True)

        _master_output_path = check_directory(os.path.join(self.output_path, 'output_master'))
        master_plot_tool = PlottingDistributions(self.df_master, '', _master_output_path)

        for col in self.biomarkers:
            print(col)
            if self.table_name != 'master_table.csv':
                master_plot_tool.plot_with_labels('4C_' + col, '3C_' + col)
            else:
                master_plot_tool.plot_2_distributions('4C_' + col, '3C_' + col, kind='kde')
示例#6
0
文件: bsh.py 项目: rinabuoy/curvature
    def save_extemes(self, n=30):

        self._try_get_data(data=True)

        list_of_extremes = []
        for col in self.df_all_cases.columns:
            list_of_extremes.append(self.df_all_cases[col].sort_values(ascending=False).index.values[:n])
            list_of_extremes.append(self.df_all_cases[col].sort_values(ascending=False).values[:n])

        index_lists = [2 * [i] for i in self.df_all_cases.columns]
        index = [item for sublist in index_lists for item in sublist]

        df_extremes = pd.DataFrame(list_of_extremes, index=index)
        _output_path = check_directory(os.path.join(self.output_path, self.view, 'output_EDA'))
        df_extremes.to_csv(os.path.join(_output_path, 'extremes.csv'))
示例#7
0
文件: bsh.py 项目: rinabuoy/curvature
    def __init__(self, source_path='data', view='4C', output_path='data', indices_file='indices_all_cases.csv',
                 interpolate_traces=None):

        self.view = view
        self.source_path = source_path
        self.output_path = check_directory(output_path)
        self.indices_file = indices_file
        self.interpolate_traces = interpolate_traces
        self.files = glob.glob(os.path.join(self.source_path, '*.CSV'))
        self.files.sort()

        self.df_all_cases = None
        self.df_master = None
        self.curv = None
        self.biomarkers = None
        self.table_name = None
示例#8
0
文件: bsh.py 项目: rinabuoy/curvature
    def _plot_data(self):

        if self.df_all_cases is None:
            self._try_get_data(data=True)

        _view_output_path = check_directory(os.path.join(self.output_path, self.view, 'output_EDA'))

        plot_tool = PlottingDistributions(self.df_all_cases, '', _view_output_path)
        for col in self.biomarkers:
            plot_tool.set_series(col)
            plot_tool.plot_distribution()

        col_combs = combinations(self.biomarkers, 2)
        for comb in col_combs:
            if self.table_name != 'master_table.csv':
                plot_tool.plot_with_labels(comb[0], comb[1])
            else:
                plot_tool.plot_2_distributions(comb[0], comb[1], kind='kde')
示例#9
0
    def plots_wt_and_curvature_vs_markers(self, save_figures=False):

        plot_dir = check_directory(os.path.join(self.output_path, 'plots'))

        x_labels = ['min_ED', 'avg_min_basal_curv', r'PLAX basal/mid', r'4C basal/mid', 'avg_basal_ED']

        for x_label in x_labels:
            for y_label in self.FACTORS_BASIC:

                if x_label in ['PLAX basal_mid', '4C basal_mid']:
                    plt.axvline(1.4, linestyle='--', c='k')
                    self.df_comparison.plot(x=x_label, y=y_label, c='SB', kind='scatter', legend=True, colorbar=True,
                                            cmap='winter', title='Relation of {} to {}'.format(y_label, x_label))
                else:
                    self.df_comparison.plot(x=x_label, y=y_label, c=x_label, kind='scatter', legend=True, colorbar=True,
                                            cmap='autumn', title='Relation of {} to {}'.format(y_label, x_label))
                if save_figures:
                    plt.savefig(os.path.join(plot_dir, r'{} vs {} HTNs.png'.format(y_label, x_label.replace('/', '_'))))
                else:
                    plt.show()
                plt.close()
示例#10
0
    def linear_regression_basic_factors(self, to_file=False, show_plots=False):
        from sklearn.linear_model import LinearRegression
        from sklearn.metrics import mean_squared_error, r2_score

        markers = ['Average septal curvature [cm-1]',
                   r'Wall thickness ratio in 4CH view',
                   r'Wall thickness ratio in PLAX view']

        list_results = []

        for marker in markers:
            for factor in self.FACTORS_BASIC:

                x = self.df_comparison[marker].values.reshape(-1, 1)
                y = self.df_comparison[factor].values.reshape(-1, 1)

                lr = LinearRegression()
                lr.fit(x, y)
                y_pred = lr.predict(x)
                rho_sp, p_sp = spearmanr(x, y)
                r_pe = pearsonr(x, y)

                dict_results = {'marker': marker, 'factor': factor, 'coefficients': lr.coef_, 'R2': r2_score(y, y_pred),
                                'mse': mean_squared_error(y, y_pred), 'spearmanr': rho_sp, 'spearmanp': p_sp,
                                'pearsonr': r_pe}

                list_results.append(dict_results)

                if show_plots:
                    plots = PlottingDistributions(self.df_comparison, 'min',
                                                  check_directory(os.path.join(self.output_path, 'plots')))
                    plots.plot_with_labels(series1=marker, series2=factor, w_labels=False)

        df_results = pd.DataFrame(list_results)

        if to_file:
            df_results.to_csv(os.path.join(self.output_path, 'Linear_regression_results.csv'))
示例#11
0
    def plot_curv_vs_wt(self, save_figures=False, w_reg=False):

        plot_dir = check_directory(os.path.join(self.output_path, 'plots'))
        x_labels = [r'PLAX basal/mid', r'4C basal/mid', 'IVSd (basal) PLAX', 'IVSd (mid) PLAX', 'IVSd (basal) 4C',
                    'IVSd (mid) 4C']
        y_labels = ['min_ED', 'avg_basal_ED', 'avg_min_basal_curv']

        # for x_label in x_labels:
        #     for y_label in y_labels:
        #         self.df_comparison.plot(x=x_label, y=y_label, c='SB', kind='scatter', legend=True, colorbar=True,
        #                                 cmap='winter', title='Relation of {} to {}'.format(y_label, x_label))
        #         means_x = self.df_comparison.groupby('SB')[x_label].mean()
        #         means_y = self.df_comparison.groupby('SB')[y_label].mean()
        #         plt.plot(means_x, means_y, 'kd')
        #
        #         if x_label in [r'PLAX basal/mid', r'4C basal/mid']:
        #             plt.axvline(1.4, linestyle='--', c='k')
        #         if save_figures:
        #             plt.savefig(os.path.join(plot_dir, r'Meas {} vs {} HTNs.png'.format(y_label,
        #                                                                                 x_label.replace('/', '_'))))
        #         else:
        #             plt.show()
        #         plt.close()

        # print('Curvature below -1: {}'.format(self.df_comparison.curv_threshold.sum()))
        # print('4C above 1.4: {}'.format((self.df_comparison['4C basal/mid'] > 1.4).sum()))
        # print('PLAX above 1.4: {}'.format((self.df_comparison['PLAX basal/mid'] > 1.4).sum()))
        # print('SB cases: {}'.format((self.df_comparison.SB > 1).sum()))
        # 'Average septal curvature [cm-1]',
        # #                                  r'Wall thickness ratio in 4CH view',
        # #                                  r'Wall thickness ratio in PLAX view'
        from matplotlib import cm
        from matplotlib.colors import ListedColormap

        top = cm.get_cmap('Oranges_r', 128)
        bottom = cm.get_cmap('Blues', 128)
        newcolors = np.vstack((top(np.linspace(0, 1, 512)),
                               bottom(np.linspace(0, 1, 512))))
        newcmp = ListedColormap(newcolors, name='OrangeBlue')

        self.df_comparison.plot(x=r'Wall thickness ratio in PLAX view', y=r'Wall thickness ratio in 4CH view',
                                c='Average septal curvature [cm-1]', kind='scatter', legend=False, s=200,
                                colorbar=True, cmap=newcmp, title='',
                                figsize=(9, 7.2))
        # plt.title('Curvature values w.r.t. both WTR metrics', fontsize=26)
        plt.xlabel(r'Wall thickness ratio in PLAX view', fontsize=23)
        plt.ylabel(r'Wall thickness ratio in 4CH view', fontsize=23)

        plt.xticks(fontsize=16)
        plt.yticks(fontsize=16)
        plt.axvline(1.4, ymax=0.47, linestyle='--', c='k')
        plt.axhline(1.4, xmax=0.462, linestyle='--', c='k')
        plt.xlim((0.7, 2.2))
        plt.ylim((0.7, 2.2))
        plt.tight_layout()
        f = plt.gcf()
        f.get_axes()[1].set_ylabel('Average septal curvature $[dm^{-1}]$', fontsize=23)
        f.get_axes()[1].tick_params(labelsize=16)
        if save_figures:
            plt.savefig(os.path.join(plot_dir, r'Ratios_curvature.svg'))
        else:
            plt.show()
示例#12
0
        view = ''
        segment = ''
        df_range = var.calculate_sem_single_index(o2=o2)
        var.bland_altman_plot_single_index(o2=o2)
    #     ranges = pd.concat((ranges, df_range), axis=0)
    #     for view in ['PLAX', '4C']:
    #         var.bland_altman_plot_multi_index(o2=o2, view=view, segment='ratio')
    #         df_range = var.calculate_sem_multi_index(o2=o2, view=view, segment='ratio')
    #         ranges = pd.concat((ranges, df_range), axis=0)
    # ranges.to_csv(os.path.join(var.output_path, 'ranges.csv'))
    # print(ranges)
    # STRAIN ANALYSIS
    #
    patient_data_path = os.path.join('C:\Data\ProjectCurvature\Analysis\Output_HTN\Statistics')
    curvature_results = os.path.join('C:/', 'Data', 'ProjectCurvature', 'Analysis', 'Output')
    output = check_directory(os.path.join('C:\Data\ProjectCurvature\Analysis\Output_HTN\Statistics\plots', 'EDA'))
    # measurements = 'AduHeart_Measurements.xlsx'
    # twodstrain = 'AduHeart_Strain_MW.xlsx'
    # curvature = 'master_table_full.csv'
    # patient_info = 'AduHeart_PatientData_Full.xlsx'
    merged_data = 'Measurements_and_2DstrainPlotting.csv'
    #
    # anal = StrainAnalysis(patient_data_path, curvature_results, output, merged_data_filename=merged_data)

    # anal.plots_wt_and_curvature_vs_markers(True)
    # anal.plot_curv_vs_wt(True)
    # anal.get_statistics()
    # anal.linear_regression_basic_factors(False, show_plots=True)

    # STATANALYSIS