def init_Population(self): self.pop = latin(self.pop_size, self.chrom_length, self.min_value, self.max_value)
numy2 = newy[datanum - traindata:, ] model[0].fit(numx0, numy0) model[1].fit(numx1, numy1) model[2].fit(numx2, numy2) if __name__ == '__main__': starttime = time.perf_counter() dimension = 10 fun = fun.ellipsoid lower_bound = -5.12 upper_bound = 5.12 datanum = 11 * dimension x = latin(datanum, dimension, lower_bound, upper_bound) y = fun(x) model = [0] * 3 traindata = int(datanum / 3) model[0] = RBFN(input_shape=dimension, hidden_shape=int(np.sqrt(traindata)), kernel='gaussian') model[1] = RBFN(input_shape=dimension, hidden_shape=int(np.sqrt(traindata)), kernel='gaussian') model[2] = RBFN(input_shape=dimension, hidden_shape=int(np.sqrt(traindata)), kernel='gaussian') resetmodel(x, y) max_iter = 100