def main(): flags['seed'] = 1234 # Parse Arguments parser = argparse.ArgumentParser(description='Faster R-CNN Networks Arguments') parser.add_argument('-n', '--run_num', default=0) # Saves all under /save_directory/model_directory/Model[n] parser.add_argument('-e', '--epochs', default=1) # Number of epochs for which to train the model parser.add_argument('-r', '--restore', default=0) # Binary to restore from a model. 0 = No restore. parser.add_argument('-m', '--model_restore', default=1) # Restores from /save_directory/model_directory/Model[n] parser.add_argument('-f', '--file_epoch', default=1) # Restore filename: 'part_[f].ckpt.meta' parser.add_argument('-s', '--slim', default=1) # Binary to restore a TF-Slim Model. 0 = No eval. parser.add_argument('-t', '--train', default=1) # Binary to train model. 0 = No train. parser.add_argument('-v', '--eval', default=1) # Binary to evalulate model. 0 = No eval. parser.add_argument('-y', '--yaml', default='pascal_voc2007.yml') # YAML file to override config defaults parser.add_argument('-l', '--learn_rate', default=1e-3) # learning Rate parser.add_argument('-i', '--vis', default=0) # enable visualizations parser.add_argument('-g', '--gpu', default=0) # specifiy which GPU to use args = vars(parser.parse_args()) # Set Arguments flags['run_num'] = int(args['run_num']) flags['num_epochs'] = int(args['epochs']) flags['restore_num'] = int(args['model_restore']) flags['file_epoch'] = int(args['file_epoch']) if args['restore'] == 0: flags['restore'] = False else: flags['restore'] = True flags['restore_file'] = 'part_' + str(args['file_epoch']) + '.ckpt.meta' flags['restore_slim_file'] = None if args['yaml'] != 'default': dictionary = cfg_from_file('cfgs/' + args['yaml']) print('Restoring from %s file' % args['yaml']) else: dictionary = [] print('Using Default settings') flags['learning_rate'] = float(args['learn_rate']) flags['vis'] = True if (int(args['vis']) == 1) else False flags['gpu'] = int(args['gpu']) update_flags() model = FasterRcnnRes50(flags, dictionary) if int(args['train']) == 1: model.train() if int(args['eval']) == 1: model.evaluate() model.close()
def main(): # Parse Arguments parser = argparse.ArgumentParser(description='PASCAL_VOC Arguments') parser.add_argument('-n', '--year', default='2007') parser.add_argument( '-y', '--yaml', default='pascal_voc2007.yml') # YAML file to override config defaults args = vars(parser.parse_args()) if args['yaml'] != 'default': dictionary = cfg_from_file('../../Models/cfgs/' + args['yaml']) print('Restoring from %s file' % args['yaml']) else: dictionary = [] print('Using Default settings') gen_Annotations_dir(args['year']) gen_Images_dir(args['year']) gen_Names_dir(args['year'])