def applyKmeansMasks(image_input, mask_samples_macro_input_list, image_samples_merged_output, proposal_table_output, micro_samples_images_output_list, centroids_files_output_list, macroclass_sampling_list, macroclass_labels_list, no_data_value, path_time_log, kmeans_param_maximum_iterations=200, kmeans_param_training_set_size_weight=1, kmeans_param_minimum_training_set_size=-1, rate_clean_micro_class=0.0, rand_otb=0, ram_otb=0, number_of_actives_pixels_threshold=200, extension_raster=".tif", save_results_intermediate=False, overwrite=True): # Mise à jour du Log starting_event = "applyKmeansMasks() : Kmeans and mask starting : " timeLine(path_time_log,starting_event) print(endC) print(cyan + "applyKmeansMasks() : " + bold + green + "## START : SUBSAMPLING OF " + str(macroclass_labels_list) + endC) print(endC) if debug >= 2: print(cyan + "applyKmeansMasks() : variables dans la fonction" + endC) print(cyan + "applyKmeansMasks() : " + endC + "image_input : " + str(image_input) + endC) print(cyan + "applyKmeansMasks() : " + endC + "image_samples_merged_output : " + str(image_samples_merged_output) + endC) print(cyan + "applyKmeansMasks() : " + endC + "proposal_table_output : " + str(proposal_table_output) + endC) print(cyan + "applyKmeansMasks() : " + endC + "mask_samples_macro_input_list : " + str(mask_samples_macro_input_list) + endC) print(cyan + "applyKmeansMasks() : " + endC + "micro_samples_images_output_list : " + str(micro_samples_images_output_list) + endC) print(cyan + "applyKmeansMasks() : " + endC + "centroids_files_output_list : " + str(centroids_files_output_list) + endC) print(cyan + "applyKmeansMasks() : " + endC + "macroclass_sampling_list : " + str(macroclass_sampling_list) + endC) print(cyan + "applyKmeansMasks() : " + endC + "macroclass_labels_list : " + str(macroclass_labels_list) + endC) print(cyan + "applyKmeansMasks() : " + endC + "kmeans_param_maximum_iterations : " + str(kmeans_param_maximum_iterations) + endC) print(cyan + "applyKmeansMasks() : " + endC + "kmeans_param_training_set_size_weight : " + str(kmeans_param_training_set_size_weight) + endC) print(cyan + "applyKmeansMasks() : " + endC + "kmeans_param_minimum_training_set_size : " + str(kmeans_param_minimum_training_set_size) + endC) print(cyan + "applyKmeansMasks() : " + endC + "rate_clean_micro_class : " + str(rate_clean_micro_class)) print(cyan + "applyKmeansMasks() : " + endC + "no_data_value : " + str(no_data_value) + endC) print(cyan + "applyKmeansMasks() : " + endC + "rand_otb : " + str(rand_otb) + endC) print(cyan + "applyKmeansMasks() : " + endC + "ram_otb : " + str(ram_otb) + endC) print(cyan + "applyKmeansMasks() : " + endC + "number_of_actives_pixels_threshold : " + str(number_of_actives_pixels_threshold)) print(cyan + "applyKmeansMasks() : " + endC + "extension_raster : " + str(extension_raster) + endC) print(cyan + "applyKmeansMasks() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "applyKmeansMasks() : " + endC + "overwrite : " + str(overwrite) + endC) # constantes HEADER_TABLEAU_MODIF = "MICROCLASSE;TRAITEMENT\n" CODAGE_16B = "uint16" CODAGE_8B = "uint8" EXT_XML = ".xml" SUFFIX_MASK_CLEAN = "_clean" SUFFIX_SAMPLE_MICRO = "_sample_micro" SUFFIX_STATISTICS = "_statistics" SUFFIX_CENTROID = "_centroid" SUFFIX_MASK_TEMP = "_tmp" # Creation des fichiers temporaires de sortie si ils ne sont pas spécifier #------------------------------------------------------------------------- length_mask = len(mask_samples_macro_input_list) images_mask_cleaned_list = [] temporary_files_list = [] micro_samples_images_list = [] centroids_files_list = [] repertory_output_tmp_list = [] if image_samples_merged_output != "" : repertory_base_output = os.path.dirname(image_samples_merged_output) filename = os.path.splitext(os.path.basename(image_samples_merged_output))[0] else : repertory_base_output = os.path.dirname(micro_samples_images_output_list[0]) filename = os.path.splitext(os.path.basename(micro_samples_images_output_list[0]))[0] file_statistic_points = repertory_base_output + os.sep + filename + SUFFIX_STATISTICS + EXT_XML for macroclass_id in range(length_mask): repertory_output = repertory_base_output + os.sep + str(macroclass_labels_list[macroclass_id]) if not os.path.isdir(repertory_output): os.makedirs(repertory_output) repertory_output_tmp_list.append(repertory_output) samples_image_input = mask_samples_macro_input_list[macroclass_id] filename = os.path.splitext(os.path.basename(samples_image_input))[0] image_mask_cleaned = repertory_output + os.sep + filename + SUFFIX_MASK_CLEAN + extension_raster images_mask_cleaned_list.append(image_mask_cleaned) image_tmp = repertory_output + os.sep + filename + SUFFIX_MASK_TEMP + extension_raster temporary_files_list.append(image_tmp) if micro_samples_images_output_list == [] : micro_samples_image = repertory_output + os.sep + filename + SUFFIX_SAMPLE_MICRO + extension_raster else : micro_samples_image = micro_samples_images_output_list[macroclass_id] micro_samples_images_list.append(micro_samples_image) if centroids_files_output_list == [] : centroids_file = repertory_output + os.sep + filename + SUFFIX_CENTROID + extension_raster else : centroids_file = centroids_files_output_list[macroclass_id] centroids_files_list.append(centroids_file) # Nettoyage des pixels superposés sur plusieurs images #----------------------------------------------------- if length_mask > 1: image_name = os.path.splitext(os.path.basename(image_input))[0] deletePixelsSuperpositionMasks(mask_samples_macro_input_list, images_mask_cleaned_list, image_name, CODAGE_8B) else: images_mask_cleaned_list = mask_samples_macro_input_list # Execution du kmeans pour chaque macroclasse #-------------------------------------------- # Initialisation de la liste pour le multi-threading thread_list = [] for macroclass_id in range(length_mask): mask_sample_input = images_mask_cleaned_list[macroclass_id] micro_samples_image = micro_samples_images_list[macroclass_id] image_tmp = temporary_files_list[macroclass_id] centroids_file = centroids_files_list[macroclass_id] check = os.path.isfile(micro_samples_image) if check and not overwrite : # Si un fichier de sortie avec le même nom existe déjà, et si l'option ecrasement est à false, alors passe à la classification suivante print(cyan + "applyKmeansMasks() : " + bold + yellow + "Computing kmeans from %s with %s already done : no actualisation" % (image_input, mask_sample_input) + endC) else: # Si non, on applique un kmeans if check : removeFile(micro_samples_image) # Suppression de l'éventuel fichier existant print(cyan + "applyKmeansMasks() : " + bold + green + "Computing kmeans from %s with %s ; output image is %s" %(image_input, mask_sample_input,micro_samples_image) + endC) # Obtention du nombre de microclasses number_of_classes = macroclass_sampling_list[macroclass_id] # Nombre de microclasses label = macroclass_labels_list[macroclass_id] # Label de la macroclasse Ex : 11000 # Gestion du multi threading pour l'appel du calcul du kmeans thread = threading.Thread(target=computeKmeans, args=(image_input, mask_sample_input, image_tmp, micro_samples_image, centroids_file, label, number_of_classes, macroclass_id, number_of_actives_pixels_threshold, kmeans_param_minimum_training_set_size, kmeans_param_maximum_iterations, length_mask, no_data_value, rand_otb, int(ram_otb/length_mask), CODAGE_8B, CODAGE_16B, save_results_intermediate, overwrite)) thread.start() thread_list.append(thread) # Start Kmeans all macro classes try: for thread in thread_list: thread.join() except: print(cyan + "applyKmeansMasks() : " + bold + red + "applyKmeansMasks() : " + endC + "Erreur lors du calcul du kmeans : impossible de demarrer le thread" + endC, file=sys.stderr) # Fusion des echantillons micro #------------------------------ if image_samples_merged_output != "" : mergeListRaster(micro_samples_images_list, image_samples_merged_output, CODAGE_16B) updateReferenceProjection(image_input, image_samples_merged_output) # Creation de la table de proposition et le fichier statistique #-------------------------------------------------------------- if proposal_table_output != "" : suppress_micro_class_list = [] info_micoclass_nbpoints_dico = {} nb_points_total = 0 nb_points_medium = 0 # Liste des identifants des micro classes disponibles id_micro_list = identifyPixelValues(image_samples_merged_output) if 0 in id_micro_list : id_micro_list.remove(0) nb_micr_class = len(id_micro_list) # Pour toutes les micro classes for id_micro in id_micro_list : nb_pixels = countPixelsOfValue(image_samples_merged_output, id_micro) info_micoclass_nbpoints_dico[id_micro] = nb_pixels nb_points_total += nb_pixels # Valeur moyenne de nombre de points if nb_micr_class != 0 : nb_points_medium = int(nb_points_total / nb_micr_class) nb_points_min = int((nb_points_medium * rate_clean_micro_class) / 100) # Identifier les micro classes trop petites if debug >= 4: print("rate_clean_micro_class = " + str(rate_clean_micro_class)) print("nb_points_medium = " + str(nb_points_medium)) print("nb_points_min = " + str(nb_points_min)) # Preparation du fichier statistique writeTextFile(file_statistic_points, '<?xml version="1.0" ?>\n') appendTextFileCR(file_statistic_points, '<GeneralStatistics>') appendTextFileCR(file_statistic_points, ' <Statistic name="pointsPerClassRaw">') for micro_class_id in info_micoclass_nbpoints_dico : nb_points = info_micoclass_nbpoints_dico[micro_class_id] if debug >= 4: print("micro_class_id = " + str(micro_class_id) + ", nb_points = " + str(nb_points)) appendTextFileCR(file_statistic_points, ' <StatisticPoints class="%d" value="%d" />' %(micro_class_id, nb_points)) if nb_points < nb_points_min : # Micro_class à proposer en effacement suppress_micro_class_list.append(micro_class_id) # Fin du fichier statistique appendTextFileCR(file_statistic_points, ' </Statistic>') appendTextFileCR(file_statistic_points, '</GeneralStatistics>') # Test si ecrassement de la table précédemment créée check = os.path.isfile(proposal_table_output) if check and not overwrite : print(cyan + "applyKmeansMasks() : " + bold + yellow + "Modifier table already exists." + '\n' + endC) else: # Tenter de supprimer le fichier try: removeFile(proposal_table_output) except Exception: pass # Ignore l'exception levee si le fichier n'existe pas (et ne peut donc pas être supprime) # lister les micro classes à supprimer text_output = HEADER_TABLEAU_MODIF for micro_class_del in suppress_micro_class_list: text_output += "%d;-1\n" %(micro_class_del) # Ecriture du fichier proposition de réaffectation writeTextFile(proposal_table_output, text_output) # Suppresions fichiers intermediaires inutiles #--------------------------------------------- if not save_results_intermediate: for macroclass_id in range(length_mask): if (os.path.isfile(temporary_files_list[macroclass_id])) : removeFile(temporary_files_list[macroclass_id]) if (length_mask > 1) and (os.path.isfile(images_mask_cleaned_list[macroclass_id])) : removeFile(images_mask_cleaned_list[macroclass_id]) if (micro_samples_images_output_list == []) and (os.path.isfile(micro_samples_images_list[macroclass_id])) : removeFile(micro_samples_images_list[macroclass_id]) if (centroids_files_output_list == []) and (os.path.isfile(centroids_files_list[macroclass_id])) : removeFile(centroids_files_list[macroclass_id]) if os.path.isdir(repertory_output_tmp_list[macroclass_id]) : removeDir(repertory_output_tmp_list[macroclass_id]) print(cyan + "applyKmeansMasks() : " + bold + green + "## END : KMEANS CLASSIFICATION" + endC) print(endC) # Mise à jour du Log ending_event = "applyKmeansMasks() : Kmeans and mask ending : " timeLine(path_time_log,ending_event) return
def computeKmeans(image_input, mask_sample_input, image_output, micro_samples_image_out, centroids_file_output, label, number_of_classes, macroclass_id, number_of_actives_pixels_threshold, kmeans_param_minimum_training_set_size, kmeans_param_maximum_iterations, length_mask, no_data_value, rand_otb, ram_otb, codage_8b, codage_16b, save_results_intermediate=False, overwrite=True): # ETAPE 0 : PREPARATION if debug >= 4: print(cyan + "computeKmeans() : " + endC + "image : " + str(image_input) + endC) print(cyan + "computeKmeans() : " + endC + "label : " + str(label) + endC) print(cyan + "computeKmeans() : " + endC + "number_of_classes : " + str(number_of_classes) + endC) print(cyan + "computeKmeans() : " + endC + "macroclass_id : " + str(macroclass_id) + endC) print(cyan + "computeKmeans() : " + endC + "mask_sample_input : " + str(mask_sample_input) + endC) print(cyan + "computeKmeans() : " + endC + "image_output : " + str(image_output) + endC) print(cyan + "computeKmeans() : " + endC + "micro_samples_image_out : " + str(micro_samples_image_out) + endC) print(cyan + "computeKmeans() : " + endC + "centroids_file_output : " + str(centroids_file_output) + endC) print(cyan + "computeKmeans() : " + endC + "kmeans_param_minimum_training_set_size : " + str(training_set_size) + endC) print(cyan + "computeKmeans() : " + endC + "number_of_classes : " + str(number_of_classes) + endC) print(cyan + "computeKmeans() : " + endC + "kmeans_param_maximum_iterations : " + str(kmeans_param_maximum_iterations) + endC) print(cyan + "computeKmeans() : " + endC + "no_data_value : " + str(no_data_value) + endC) print(cyan + "computeKmeans() : " + endC + "rand_otb : " + str(rand_otb) + endC) print(cyan + "computeKmeans() : " + endC + "ram_otb : " + str(ram_otb) + endC) print(cyan + "computeKmeans() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "computeKmeans() : " + endC + "overwrite : " + str(overwrite) + endC) # kmeans_param_minimum_training_set_size ? if kmeans_param_minimum_training_set_size == -1: # Le nombre de pixels d'apprentissage correspond au nombre de pixels à 1 du masque "mask_sample_input" training_set_size = countPixelsOfValue(mask_sample_input, 1) else : training_set_size = kmeans_param_minimum_training_set_size # ETAPE 1 : CLASSIFICATION NON SUPERVISEE # Cas où il y a moins de pixels disponibles pour effectuer le kmeans que le seuil if training_set_size < (number_of_classes * number_of_actives_pixels_threshold) : print(cyan + "computeKmeans() : " + bold + yellow + "MACROCLASSE %s / %s (%s): Nombre insuffisant de pixels disponibles pour appliquer le kmeans : %s sur %s requis au minimum " %(macroclass_id, length_mask, label, training_set_size, number_of_classes * number_of_actives_pixels_threshold) + endC) if debug >= 2: print(cyan + "computeKmeans() : " + bold + yellow + "MACROCLASSE %s / %s : SOUS ECHANTILLONAGE NON APPLIQUE A LA CLASSE %s" %(macroclass_id + 1, length_mask, label) + endC) print(cyan + "computeKmeans() : " + bold + yellow + "MACROCLASSE %s / %s : COPIE DE %s A %s" %(macroclass_id + 1, length_mask, mask_sample_input, micro_samples_image_out) + endC + "\n") # Recopie de fichier d'entré mask shutil.copy2(mask_sample_input, image_output) else: # Cas où il y a suffisamment de pixels pour effectuer le kmeans if centroids_file_output != None: # Distinction des cas avec et sans coordonnees des centroides command = "otbcli_KMeansClassification -in %s -out %s %s -vm %s -ts %s -nc %s -maxit %s" %(image_input, image_output, codage_8b, mask_sample_input, training_set_size, number_of_classes, kmeans_param_maximum_iterations) if IS_VERSION_UPPER_OTB_7_0 : command += " -centroids.out %s " %(centroids_file_output) else : command += " -outmeans %s " %(centroids_file_output) if no_data_value != 0: command += " -nodatalabel %d" %(no_data_value) if rand_otb > 0: command += " -rand %d" %(rand_otb) if ram_otb > 0: command += " -ram %d" %(ram_otb) if debug >=3: print(cyan + "computeKmeans() : " + bold + green + "MACROCLASSE %s / %s (%s): ETAPE 1 : Nombre suffisant de pixels disponibles %s sur %s requis au minimum " %(macroclass_id + 1, length_mask, label, training_set_size, number_of_classes * number_of_actives_pixels_threshold) + endC) if debug >=2: print(cyan + "computeKmeans() : " + bold + green + "MACROCLASSE %s / %s (%s): ETAPE 1 : Computing kmeans from %s " %(macroclass_id + 1, length_mask, label, image_input) + endC) print(cyan + "computeKmeans() : " + bold + green + "Mask : %s " %(mask_sample_input) + endC) print(cyan + "computeKmeans() : " + bold + green + "Output image : %s" %(micro_samples_image_out) + endC) print(command) exitCode = os.system(command) if exitCode != 0: raise NameError(cyan + "computeKmeans() : " + bold + red + "An error occured during otbcli_KMeansClassification command. See error message above." + endC) else : command = "otbcli_KMeansClassification -in %s -out %s %s -vm %s -ts %s -nc %s -maxit %s" %(image_input, image_output, codage_8b, mask_sample_input, str(training_set_size), str(number_of_classes), str(kmeans_param_maximum_iterations)) if no_data_value != 0: command += " -nodatalabel %d" %(no_data_value) if rand_otb > 0: command += " -rand %d" %(rand_otb) if ram_otb > 0: command += " -ram %d" %(ram_otb) if debug >=2: print(cyan + "computeKmeans() : " + bold + green + "MACROCLASSE %s / %s (%s): ETAPE 1 : Computing kmeans from %s with %s ; output image is %s" %(macroclass_id + 1, length_mask,label,image_input, mask_sample_input,micro_samples_image_out) + endC) print(command) exitCode = os.system(command) if exitCode != 0: raise NameError(cyan + "computeKmeans() : " + bold + red + "An error occured during otbcli_KMeansClassification command. See error message above." + endC) # ETAPE 2 : GESTION DU SYSTEME DE PROJECTION if debug >=2: print(cyan + "computeKmeans() : " + bold + green + "MACROCLASSE %s / %s (%s): ETAPE 2 : GESTION DU SYSTEME DE PROJECTION" %(macroclass_id + 1, length_mask, label) + endC) updateReferenceProjection (image_input, image_output) # ETAPE 3 : APPLICATION DU MASQUE ET LABELLISATION EN MICROCLASSES expression = "\"(im1b1+%s)*im2b1\"" %(str(label)) # Expression qui passe à 0 les pixels masqués et qui labelise à macroclass_label+classe du computeKmeans command = "otbcli_BandMath -il %s %s -out %s %s -exp %s" %(image_output, mask_sample_input, micro_samples_image_out, codage_16b, expression) if ram_otb > 0: command += " -ram %d" %(ram_otb) if debug >=2: print(cyan + "computeKmeans() : " + bold + green + "MACROCLASSE %s / %s (%s): ETAPE 3 : APPLICATION DU MASQUE ET LABELLISATION EN MICROCLASSES" %(macroclass_id + 1, length_mask,label) + endC) print(command) exitCode = os.system(command) if exitCode != 0: print(command) raise NameError(cyan + "computeKmeans() : " + bold + red + "An error occured during otbcli_BandMath command. See error message above." + endC) return
def createMnh(image_mns_input, image_mnt_input, image_threshold_input, vector_emprise_input, image_mnh_output, automatic, bd_road_vector_input_list, bd_road_buff_list, sql_road_expression_list, bd_build_vector_input_list, height_bias, threshold_bd_value, threshold_delta_h, mode_interpolation, method_interpolation, interpolation_bco_radius, simplify_vector_param, epsg, no_data_value, ram_otb, path_time_log, format_raster='GTiff', format_vector='ESRI Shapefile', extension_raster=".tif", extension_vector=".shp", save_results_intermediate=False, overwrite=True): # Mise à jour du Log starting_event = "createMnh() : MNH creation starting : " timeLine(path_time_log,starting_event) print(endC) print(bold + green + "## START : MNH CREATION" + endC) print(endC) if debug >= 2: print(bold + green + "createMnh() : Variables dans la fonction" + endC) print(cyan + "createMnh() : " + endC + "image_mns_input : " + str(image_mns_input) + endC) print(cyan + "createMnh() : " + endC + "image_mnt_input : " + str(image_mnt_input) + endC) print(cyan + "createMnh() : " + endC + "image_threshold_input : " + str(image_threshold_input) + endC) print(cyan + "createMnh() : " + endC + "vector_emprise_input : " + str(vector_emprise_input) + endC) print(cyan + "createMnh() : " + endC + "image_mnh_output : " + str(image_mnh_output) + endC) print(cyan + "createMnh() : " + endC + "automatic : " + str(automatic) + endC) print(cyan + "createMnh() : " + endC + "bd_road_vector_input_list : " + str(bd_road_vector_input_list) + endC) print(cyan + "createMnh() : " + endC + "bd_road_buff_list : " + str(bd_road_buff_list) + endC) print(cyan + "createMnh() : " + endC + "sql_road_expression_list : " + str(sql_road_expression_list) + endC) print(cyan + "createMnh() : " + endC + "bd_build_vector_input_list : " + str(bd_build_vector_input_list) + endC) print(cyan + "createMnh() : " + endC + "height_bias : " + str(height_bias) + endC) print(cyan + "createMnh() : " + endC + "threshold_bd_value : " + str(threshold_bd_value) + endC) print(cyan + "createMnh() : " + endC + "threshold_delta_h : " + str(threshold_delta_h) + endC) print(cyan + "createMnh() : " + endC + "mode_interpolation : " + str(mode_interpolation) + endC) print(cyan + "createMnh() : " + endC + "method_interpolation : " + str(method_interpolation) + endC) print(cyan + "createMnh() : " + endC + "interpolation_bco_radius : " + str(interpolation_bco_radius) + endC) print(cyan + "createMnh() : " + endC + "simplify_vector_param : " + str(simplify_vector_param) + endC) print(cyan + "createMnh() : " + endC + "epsg : " + str(epsg) + endC) print(cyan + "createMnh() : " + endC + "no_data_value : " + str(no_data_value) + endC) print(cyan + "createMnh() : " + endC + "ram_otb : " + str(ram_otb) + endC) print(cyan + "createMnh() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "createMnh() : " + endC + "format_raster : " + str(format_raster) + endC) print(cyan + "createMnh() : " + endC + "format_vector : " + str(format_vector) + endC) print(cyan + "createMnh() : " + endC + "extension_raster : " + str(extension_raster) + endC) print(cyan + "createMnh() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "createMnh() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "createMnh() : " + endC + "overwrite : " + str(overwrite) + endC) # LES CONSTANTES PRECISION = 0.0000001 CODAGE_8B = "uint8" CODAGE_F = "float" SUFFIX_CUT = "_cut" SUFFIX_CLEAN = "_clean" SUFFIX_SAMPLE = "_sample" SUFFIX_MASK = "_mask" SUFFIX_TMP = "_tmp" SUFFIX_MNS = "_mns" SUFFIX_MNT = "_mnt" SUFFIX_ROAD = "_road" SUFFIX_BUILD = "_build" SUFFIX_RASTER = "_raster" SUFFIX_VECTOR = "_vector" # DEFINIR LES REPERTOIRES ET FICHIERS TEMPORAIRES repertory_output = os.path.dirname(image_mnh_output) basename_mnh = os.path.splitext(os.path.basename(image_mnh_output))[0] sub_repertory_raster_temp = repertory_output + os.sep + basename_mnh + SUFFIX_RASTER + SUFFIX_TMP sub_repertory_vector_temp = repertory_output + os.sep + basename_mnh + SUFFIX_VECTOR + SUFFIX_TMP cleanTempData(sub_repertory_raster_temp) cleanTempData(sub_repertory_vector_temp) basename_vector_emprise = os.path.splitext(os.path.basename(vector_emprise_input))[0] basename_mns_input = os.path.splitext(os.path.basename(image_mns_input))[0] basename_mnt_input = os.path.splitext(os.path.basename(image_mnt_input))[0] image_mnh_tmp = sub_repertory_raster_temp + os.sep + basename_mnh + SUFFIX_TMP + extension_raster image_mnh_road = sub_repertory_raster_temp + os.sep + basename_mnh + SUFFIX_ROAD + extension_raster vector_bd_bati_temp = sub_repertory_vector_temp + os.sep + basename_mnh + SUFFIX_BUILD + SUFFIX_TMP + extension_vector vector_bd_bati = repertory_output + os.sep + basename_mnh + SUFFIX_BUILD + extension_vector raster_bd_bati = sub_repertory_vector_temp + os.sep + basename_mnh + SUFFIX_BUILD + extension_raster removeVectorFile(vector_bd_bati) image_emprise_mnt_mask = sub_repertory_raster_temp + os.sep + basename_vector_emprise + SUFFIX_MNT + extension_raster image_mnt_cut = sub_repertory_raster_temp + os.sep + basename_mnt_input + SUFFIX_CUT + extension_raster image_mnt_clean = sub_repertory_raster_temp + os.sep + basename_mnt_input + SUFFIX_CLEAN + extension_raster image_mnt_clean_sample = sub_repertory_raster_temp + os.sep + basename_mnt_input + SUFFIX_CLEAN + SUFFIX_SAMPLE + extension_raster image_emprise_mns_mask = sub_repertory_raster_temp + os.sep + basename_vector_emprise + SUFFIX_MNS + extension_raster image_mns_cut = sub_repertory_raster_temp + os.sep + basename_mns_input + SUFFIX_CUT + extension_raster image_mns_clean = sub_repertory_raster_temp + os.sep + basename_mns_input + SUFFIX_CLEAN + extension_raster vector_bd_road_temp = sub_repertory_vector_temp + os.sep + basename_mnh + SUFFIX_ROAD + SUFFIX_TMP + extension_vector raster_bd_road_mask = sub_repertory_raster_temp + os.sep + basename_mnh + SUFFIX_ROAD + SUFFIX_MASK + extension_raster if image_threshold_input != "" : basename_threshold_input = os.path.splitext(os.path.basename(image_threshold_input))[0] image_threshold_cut = sub_repertory_raster_temp + os.sep + basename_threshold_input + SUFFIX_CUT + extension_raster image_threshold_mask = sub_repertory_raster_temp + os.sep + basename_threshold_input + SUFFIX_MASK + extension_raster # VERIFICATION SI LE FICHIER DE SORTIE EXISTE DEJA # Si un fichier de sortie avec le même nom existe déjà, et si l'option ecrasement est à false, alors on ne fait rien check = os.path.isfile(image_mnh_output) if check and not overwrite: print(bold + yellow + "createMnh() : " + endC + "Create mnh %s from %s and %s already done : no actualisation" % (image_mnh_output, image_mns_input, image_mnt_input) + endC) # Si non, ou si la fonction ecrasement est désative, alors on le calcule else: if check: try: # Suppression de l'éventuel fichier existant removeFile(image_mnh_output) except Exception: pass # Si le fichier ne peut pas être supprimé, on suppose qu'il n'existe pas et on passe à la suite # DECOUPAGE DES FICHIERS MS ET MNT D'ENTREE PAR LE FICHIER D'EMPRISE if debug >= 3: print(bold + green + "createMnh() : " + endC + "Decoupage selon l'emprise des fichiers %s et %s " %(image_mns_input, image_mnt_input) + endC) # Fonction de découpe du mns if not cutImageByVector(vector_emprise_input, image_mns_input, image_mns_cut, None, None, no_data_value, epsg, format_raster, format_vector) : raise NameError (cyan + "createMnh() : " + bold + red + "!!! Une erreur c'est produite au cours du decoupage de l'image : " + image_mns_input + ". Voir message d'erreur." + endC) # Fonction de découpe du mnt if not cutImageByVector(vector_emprise_input, image_mnt_input, image_mnt_cut, None, None, no_data_value, epsg, format_raster, format_vector) : raise NameError (cyan + "createMnh() : " + bold + red + "!!! Une erreur c'est produite au cours du decoupage de l'image : " + image_mnt_input + ". Voir message d'erreur." + endC) if debug >= 3: print(bold + green + "createMnh() : " + endC + "Decoupage des fichiers %s et %s complet" %(image_mns_cut, image_mnt_cut) + endC) # REBOUCHAGE DES TROUS DANS LE MNT D'ENTREE SI NECESSAIRE nodata_mnt = getNodataValueImage(image_mnt_cut) pixelNodataCount = countPixelsOfValue(image_mnt_cut, nodata_mnt) if pixelNodataCount > 0 : if debug >= 3: print(bold + green + "createMnh() : " + endC + "Fill the holes MNT for %s" %(image_mnt_cut) + endC) # Rasterisation du vecteur d'emprise pour creer un masque pour boucher les trous du MNT rasterizeBinaryVector(vector_emprise_input, image_mnt_cut, image_emprise_mnt_mask, 1, CODAGE_8B) # Utilisation de SAGA pour boucher les trous fillNodata(image_mnt_cut, image_emprise_mnt_mask, image_mnt_clean, save_results_intermediate) if debug >= 3: print(bold + green + "createMnh() : " + endC + "Fill the holes MNT to %s completed" %(image_mnt_clean) + endC) else : image_mnt_clean = image_mnt_cut if debug >= 3: print(bold + green + "\ncreateMnh() : " + endC + "Fill the holes not necessary MNT for %s" %(image_mnt_cut) + endC) # REBOUCHAGE DES TROUS DANS LE MNS D'ENTREE SI NECESSAIRE nodata_mns = getNodataValueImage(image_mns_cut) pixelNodataCount = countPixelsOfValue(image_mns_cut, nodata_mns) if pixelNodataCount > 0 : if debug >= 3: print(bold + green + "createMnh() : " + endC + "Fill the holes MNS for %s" %(image_mns_cut) + endC) # Rasterisation du vecteur d'emprise pour creer un masque pour boucher les trous du MNS rasterizeBinaryVector(vector_emprise_input, image_mns_cut, image_emprise_mns_mask, 1, CODAGE_8B) # Utilisation de SAGA pour boucher les trous fillNodata(image_mns_cut, image_emprise_mns_mask, image_mns_clean, save_results_intermediate) if debug >= 3: print(bold + green + "\ncreateMnh() : " + endC + "Fill the holes MNS to %s completed" %(image_mns_clean) + endC) else : image_mns_clean = image_mns_cut if debug >= 3: print(bold + green + "createMnh() : " + endC + "Fill the holes not necessary MNS for %s" %(image_mns_cut) + endC) # CALLER LE FICHIER MNT AU FORMAT DU FICHIER MNS # Commande de mise en place de la geométrie re-echantionage command = "otbcli_Superimpose -inr " + image_mns_clean + " -inm " + image_mnt_clean + " -mode " + mode_interpolation + " -interpolator " + method_interpolation + " -out " + image_mnt_clean_sample if method_interpolation.lower() == 'bco' : command += " -interpolator.bco.radius " + str(interpolation_bco_radius) if ram_otb > 0: command += " -ram %d" %(ram_otb) if debug >= 3: print(cyan + "createMnh() : " + bold + green + "Réechantillonage du fichier %s par rapport à la reference %s" %(image_mnt_clean, image_mns_clean) + endC) print(command) exit_code = os.system(command) if exit_code != 0: print(command) raise NameError (cyan + "createMnh() : " + bold + red + "!!! Une erreur c'est produite au cours du superimpose de l'image : " + image_mnt_input + ". Voir message d'erreur." + endC) # INCRUSTATION DANS LE MNH DES DONNEES VECTEURS ROUTES if debug >= 3: print(bold + green + "createMnh() : " + endC + "Use BD road to clean MNH" + endC) # Creation d'un masque de filtrage des donnes routes (exemple : le NDVI) if image_threshold_input != "" : if not cutImageByVector(vector_emprise_input, image_threshold_input, image_threshold_cut, None, None, no_data_value, epsg, format_raster, format_vector) : raise NameError (cyan + "createMnh() : " + bold + red + "!!! Une erreur c'est produite au cours du decoupage de l'image : " + image_threshold_input + ". Voir message d'erreur." + endC) createBinaryMask(image_threshold_cut, image_threshold_mask, threshold_bd_value, False, CODAGE_8B) # Execution de la fonction createMacroSamples pour une image correspondant au données routes if bd_road_vector_input_list != [] : createMacroSamples(image_mns_clean, vector_emprise_input, vector_bd_road_temp, raster_bd_road_mask, bd_road_vector_input_list, bd_road_buff_list, sql_road_expression_list, path_time_log, basename_mnh, simplify_vector_param, format_vector, extension_vector, save_results_intermediate, overwrite) if debug >= 3: print(bold + green + "\ncreateMnh() : " + endC + "File raster from BD road is create %s" %(raster_bd_road_mask) + endC) # CALCUL DU MNH # Calcul par bandMath du MNH definir l'expression qui soustrait le MNT au MNS en introduisant le biais et en mettant les valeurs à 0 à une valeur approcher de 0.0000001 delta = "" if height_bias > 0 : delta = "+%s" %(str(height_bias)) elif height_bias < 0 : delta = "-%s" %(str(abs(height_bias))) else : delta = "" # Definition de l'expression if bd_road_vector_input_list != [] : if image_threshold_input != "" : expression = "\"im3b1 > 0 and im4b1 > 0?%s:(im1b1-im2b1%s) > 0.0?im1b1-im2b1%s:%s\"" %(str(PRECISION), delta, delta, str(PRECISION)) command = "otbcli_BandMath -il %s %s %s %s -out %s %s -exp %s" %(image_mns_clean, image_mnt_clean_sample, raster_bd_road_mask, image_threshold_mask, image_mnh_tmp, CODAGE_F, expression) else : expression = "\"im3b1 > 0?%s:(im1b1-im2b1%s) > 0.0?im1b1-im2b1%s:%s\"" %(str(PRECISION), delta, delta, str(PRECISION)) command = "otbcli_BandMath -il %s %s %s -out %s %s -exp %s" %(image_mns_clean, image_mnt_clean_sample, raster_bd_road_mask, image_mnh_tmp, CODAGE_F, expression) else : expression = "\"(im1b1-im2b1%s) > 0.0?im1b1-im2b1%s:%s\"" %(delta, delta, str(PRECISION)) command = "otbcli_BandMath -il %s %s -out %s %s -exp %s" %(image_mns_clean, image_mnt_clean_sample, image_mnh_tmp, CODAGE_F, expression) if ram_otb > 0: command += " -ram %d" %(ram_otb) if debug >= 3: print(cyan + "createMnh() : " + bold + green + "Calcul du MNH %s difference du MNS : %s par le MNT :%s" %(image_mnh_tmp, image_mns_clean, image_mnt_clean_sample) + endC) print(command) exitCode = os.system(command) if exitCode != 0: print(command) raise NameError(cyan + "createMnh() : " + bold + red + "An error occured during otbcli_BandMath command to compute MNH " + image_mnh_tmp + ". See error message above." + endC) # DECOUPAGE DU MNH if bd_build_vector_input_list == []: image_mnh_road = image_mnh_output if debug >= 3: print(bold + green + "createMnh() : " + endC + "Decoupage selon l'emprise du fichier mnh %s " %(image_mnh_tmp) + endC) # Fonction de découpe du mnh if not cutImageByVector(vector_emprise_input, image_mnh_tmp, image_mnh_road, None, None, no_data_value, epsg, format_raster, format_vector) : raise NameError (cyan + "createMnh() : " + bold + red + "!!! Une erreur c'est produite au cours du decoupage de l'image : " + image_mns_input + ". Voir message d'erreur." + endC) if debug >= 3: print(bold + green + "createMnh() : " + endC + "Decoupage du fichier mnh %s complet" %(image_mnh_road) + endC) # INCRUSTATION DANS LE MNH DES DONNEES VECTEURS BATIS # Si demander => liste de fichier vecteur bati passé en donnée d'entrée if bd_build_vector_input_list != []: # Découpage des vecteurs de bd bati exogenes avec l'emprise vectors_build_cut_list = [] for vector_build_input in bd_build_vector_input_list : vector_name = os.path.splitext(os.path.basename(vector_build_input))[0] vector_build_cut = sub_repertory_vector_temp + os.sep + vector_name + SUFFIX_CUT + extension_vector vectors_build_cut_list.append(vector_build_cut) cutoutVectors(vector_emprise_input, bd_build_vector_input_list, vectors_build_cut_list, format_vector) # Fusion des vecteurs batis découpés fusionVectors (vectors_build_cut_list, vector_bd_bati_temp) # Croisement vecteur rasteur entre le vecteur fusion des batis et le MNH créé precedement statisticsVectorRaster(image_mnh_road, vector_bd_bati_temp, "", 1, False, False, True, ['PREC_PLANI','PREC_ALTI','ORIGIN_BAT','median','sum','std','unique','range'], [], {}, path_time_log, True, format_vector, save_results_intermediate, overwrite) # Calcul de la colonne delta_H entre les hauteurs des batis et la hauteur moyenne du MNH sous le bati COLUMN_ID = "ID" COLUMN_H_BUILD = "HAUTEUR" COLUMN_H_BUILD_MIN = "Z_MIN" COLUMN_H_BUILD_MAX = "Z_MAX" COLUMN_H_MNH = "mean" COLUMN_H_MNH_MIN = "min" COLUMN_H_MNH_MAX = "max" COLUMN_H_DIFF = "H_diff" field_type = ogr.OFTReal field_value = 0.0 field_width = 20 field_precision = 2 attribute_name_dico = {} attribute_name_dico[COLUMN_ID] = ogr.OFTString attribute_name_dico[COLUMN_H_BUILD] = ogr.OFTReal attribute_name_dico[COLUMN_H_MNH] = ogr.OFTReal # Ajouter la nouvelle colonne H_diff addNewFieldVector(vector_bd_bati_temp, COLUMN_H_DIFF, field_type, field_value, field_width, field_precision, format_vector) # Recuperer les valeur de hauteur du bati et du mnt dans le vecteur data_z_dico = getAttributeValues(vector_bd_bati_temp, None, None, attribute_name_dico, format_vector) # Calculer la difference des Hauteur bati et mnt field_new_values_dico = {} for index in range(len(data_z_dico[COLUMN_ID])) : index_polygon = data_z_dico[COLUMN_ID][index] delta_h = abs(data_z_dico[COLUMN_H_BUILD][index] - data_z_dico[COLUMN_H_MNH][index]) field_new_values_dico[index_polygon] = {COLUMN_H_DIFF:delta_h} # Mettre à jour la colonne H_diff dans le vecteur setAttributeIndexValuesList(vector_bd_bati_temp, COLUMN_ID, field_new_values_dico, format_vector) # Suppression de tous les polygones bati dons la valeur du delat H est inferieur à threshold_delta_h column = "'%s, %s, %s, %s, %s, %s, %s, %s'"% (COLUMN_ID, COLUMN_H_BUILD, COLUMN_H_BUILD_MIN, COLUMN_H_BUILD_MAX, COLUMN_H_MNH, COLUMN_H_MNH_MIN, COLUMN_H_MNH_MAX, COLUMN_H_DIFF) expression = "%s > %s" % (COLUMN_H_DIFF, threshold_delta_h) filterSelectDataVector(vector_bd_bati_temp, vector_bd_bati, column, expression, overwrite, format_vector) # Attention!!!! PAUSE pour trie et verification des polygones bati nom deja present dans le MNH ou non if not automatic : print(bold + blue + "Application MnhCreation => " + endC + "Vérification manuelle du vecteur bati %s pour ne concerver que les batis non présent dans le MNH courant %s" %(vector_bd_bati_temp, image_mnh_road) + endC) input(bold + red + "Appuyez sur entree pour continuer le programme..." + endC) # Creation du masque bati avec pour H la hauteur des batiments rasterizeVector(vector_bd_bati, raster_bd_bati, image_mnh_road, COLUMN_H_BUILD) # Fusion du mask des batis et du MNH temporaire expression = "\"im1b1 > 0.0?im1b1:im2b1\"" command = "otbcli_BandMath -il %s %s -out %s %s -exp %s" %(raster_bd_bati, image_mnh_road, image_mnh_output, CODAGE_F, expression) if ram_otb > 0: command += " -ram %d" %(ram_otb) if debug >= 3: print(cyan + "createMnh() : " + bold + green + "Amelioration du MNH %s ajout des hauteurs des batis %s" %(image_mnh_road, raster_bd_bati) + endC) print(command) exitCode = os.system(command) if exitCode != 0: print(command) raise NameError(cyan + "createMnh() : " + bold + red + "An error occured during otbcli_BandMath command to compute MNH Final" + image_mnh_output + ". See error message above." + endC) # SUPPRESIONS FICHIERS INTERMEDIAIRES INUTILES # Suppression des fichiers intermédiaires if not save_results_intermediate : if bd_build_vector_input_list != []: removeFile(image_mnh_road) removeFile(image_threshold_cut) removeFile(image_threshold_mask) removeFile(raster_bd_bati) removeVectorFile(vector_bd_road_temp) removeVectorFile(vector_bd_bati_temp) removeVectorFile(vector_bd_bati) # A confirmer!!! removeFile(raster_bd_road_mask) removeFile(image_mnh_tmp) deleteDir(sub_repertory_raster_temp) deleteDir(sub_repertory_vector_temp) print(endC) print(bold + green + "## END : MNH CREATION" + endC) print(endC) # Mise à jour du Log ending_event = "createMnh() : MNH creation ending : " timeLine(path_time_log,ending_event) return
def classRasterSubSampling(satellite_image_input, classified_image_input, image_output, table_reallocation, sub_sampling_number, no_data_value, path_time_log, rand_otb=0, ram_otb=0, number_of_actives_pixels_threshold=8000, extension_raster=".tif", save_results_intermediate=False, overwrite=True) : # Mise à jour du Log starting_event = "classRasterSubSampling() : Micro class subsampling on classification image starting : " timeLine(path_time_log,starting_event) if debug >= 3: print(cyan + "classRasterSubSampling() : " + endC + "satellite_image_input : " + str(satellite_image_input) + endC) print(cyan + "classRasterSubSampling() : " + endC + "classified_image_input : " + str(classified_image_input) + endC) print(cyan + "classRasterSubSampling() : " + endC + "image_output : " + str(image_output) + endC) print(cyan + "classRasterSubSampling() : " + endC + "table_reallocation : " + str(table_reallocation) + endC) print(cyan + "classRasterSubSampling() : " + endC + "sub_sampling_number : " + str(sub_sampling_number) + endC) print(cyan + "classRasterSubSampling() : " + endC + "no_data_value : " + str(no_data_value) + endC) print(cyan + "classRasterSubSampling() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "classRasterSubSampling() : " + endC + "rand_otb : " + str(rand_otb) + endC) print(cyan + "classRasterSubSampling() : " + endC + "ram_otb : " + str(ram_otb) + endC) print(cyan + "classRasterSubSampling() : " + endC + "number_of_actives_pixels_threshold : " + str(number_of_actives_pixels_threshold) + endC) print(cyan + "classRasterSubSampling() : " + endC + "extension_raster : " + str(extension_raster) + endC) print(cyan + "classRasterSubSampling() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "classRasterSubSampling() : " + endC + "overwrite : " + str(overwrite) + endC) # Constantes CODAGE = "uint16" CODAGE_8B = "uint8" TEMP = "TempSubSampling_" MASK_SUF = "_Mask" SUB_SAMPLE_SUF = "_SubSampled" CENTROID_SUF = "_Centroids" TEMP_OUT = "_temp_out" EXTENSION_TXT = ".txt" # Contenu de la nouvelle table text_new_table = "" # CREATION DES NOMS DE CHEMINS UTILES name = os.path.splitext(os.path.basename(image_output))[0] input_classified_image_path = os.path.dirname(classified_image_input) # Ex : D2_Par_Zone/Paysage_01/Corr_2/Resultats/Temp/ temp_sub_sampling_path = input_classified_image_path + os.sep + TEMP + name + os.sep # Dossier contenant les fichiers temporaires de cette brique. Ex : D2_Par_Zone/Paysage_01/Corr_2/Resultats/Temp/Temp_Sub_Sampling/ input_classified_image_complete_name = os.path.basename(classified_image_input) # Ex : Paysage_01_raw.tif input_classified_image_name = os.path.splitext(input_classified_image_complete_name)[0] # Ex : Paysage_01_raw input_classified_image_extend = os.path.splitext(input_classified_image_complete_name)[1] # Ex : .tif image_output_temp = os.path.splitext(image_output)[0] + TEMP_OUT + extension_raster # Ex : D2_Par_Zone/Paysage_01/Corr_2/Resultats/Temp/Temp_Sub_Sampling/Paysage_01_raw_temp.tif # Création de temp_sub_sampling_path s'il n'existe pas if not os.path.isdir(os.path.dirname(temp_sub_sampling_path)) : os.makedirs(os.path.dirname(temp_sub_sampling_path)) print(cyan + "classRasterSubSampling() : " + bold + green + "START ...\n" + endC) # Lecture du fichier table de proposition supp_class_list, reaff_class_list, macro_reaff_class_list, sub_sampling_class_list, sub_sampling_number_list = readReallocationTable(table_reallocation, sub_sampling_number) # Fonction de Lib_text info_table_list = readTextFileBySeparator(table_reallocation, "\n") # Recherche de la liste des micro classes contenu dans le fichier de classification d'entrée class_values_list = identifyPixelValues(classified_image_input) # Supression dans la table des lignes correspondant aux actions "-2" for ligne_table in info_table_list: if not "-2" in ligne_table[0]: text_new_table += str(ligne_table[0]) + "\n" if debug >= 3: print("supp_class_list : " + str(supp_class_list)) print("reaff_class_list : " + str(reaff_class_list)) print("macro_reaff_class_list : " + str(macro_reaff_class_list)) print("sub_sampling_class_list : " + str(sub_sampling_class_list)) print("sub_sampling_number_list : " + str(sub_sampling_number_list)) # Dans cettre brique, on ne s'intéresse qu'à la partie sous echantillonage # Gestion du cas de suppression if len(supp_class_list) > 0: print(cyan + "classRasterSubSampling() : " + bold + yellow + "ATTENTION : Les classes ne sont pas supprimees pour le fichier classification format raster." + '\n' + endC) # Gestion du cas de réaffectation if len(reaff_class_list) > 0: print(cyan + "classRasterSubSampling() : " + bold + yellow + "ATTENTION : la brique SpecificSubSampling ne traite pas les reaffectation. A l'issue de cette brique, verifier la table de reallocation et executer la brique de reallocation." + '\n' + endC) if len(sub_sampling_class_list) > 0 : if debug >= 3: print(cyan + "classRasterSubSampling() : " + bold + green + "DEBUT DU SOUS ECHANTILLONAGE DES CLASSES %s " %(sub_sampling_class_list) + endC) # Parcours des classes à sous échantilloner processing_pass_first = False for idx_class in range(len(sub_sampling_class_list)) : # INITIALISATION DU TRAITEMENT DE LA CLASSE # Classe à sous échantilloner. Ex : 21008 class_to_sub_sample = sub_sampling_class_list[idx_class] if idx_class == 0 or not processing_pass_first : # Image à reclassifier : classified_image_input au premier tour image_to_sub_sample = classified_image_input else : # Image à reclassifier : la sortie de la boucle précédente ensuite image_to_sub_sample = image_output # determiner le label disponible de la classe base_subclass_label = int(class_to_sub_sample/100)*100 subclass_label = base_subclass_label for class_value in class_values_list: if (class_value > subclass_label) and (class_value < base_subclass_label + 100) : subclass_label = class_value subclass_label += 1 # subclass_label = int(class_to_sub_sample/100)*100 + 20 + class_to_sub_sample%20 * 5 # Label de départ des sous classes. Formule proposée : 3 premiers chiffres de class_to_sub_sample puis ajout de 20 + 5 * class_to_sub_sample modulo 20. Ex : 21000 -> 21020, 21001-> 21025, 21002-> 21030 etc... # Part du principe qu'il y a moins de 20 micro classes et que chacune est sous échantillonnée au maximum en 5 sous parties. Si ce n'est pas le cas : A ADAPTER number_of_sub_samples = sub_sampling_number_list[idx_class] # Nombre de sous classes demandées pour le sous échantillonage de class_to_sub_sample. Ex : 4 class_mask_raster = temp_sub_sampling_path + input_classified_image_name + "_" + str(class_to_sub_sample) + MASK_SUF + input_classified_image_extend # Ex : D2_Par_Zone/Paysage_01/Corr_2/Resultats/Temp/Temp_Sub_Sampling/Paysage_01_raw_21008_Mask.tif class_subsampled_raster = temp_sub_sampling_path + input_classified_image_name + "_" + str(class_to_sub_sample) + SUB_SAMPLE_SUF + input_classified_image_extend # Ex : D2_Par_Zone/Paysage_01/Corr_2/Resultats/Temp/Temp_Sub_Sampling/Paysage_01_raw_21008_SubSampled.tif centroid_file = temp_sub_sampling_path + input_classified_image_name + "_" + str(class_to_sub_sample) + CENTROID_SUF + EXTENSION_TXT # Ex : D2_Par_Zone/Paysage_01/Corr_2/Resultats/Temp/Temp_Sub_Sampling/Paysage_01_raw_21008_Centroid.txt if debug >= 5: print(cyan + "classRasterSubSampling() : " + endC + "class_to_sub_sample :" , class_to_sub_sample) print(cyan + "classRasterSubSampling() : " + endC + "subclass_label :" , subclass_label) print(cyan + "classRasterSubSampling() : " + endC + "number_of_sub_samples :" , number_of_sub_samples) print(cyan + "classRasterSubSampling() : " + endC + "class_mask_raster :" , class_mask_raster) print(cyan + "classRasterSubSampling() : " + endC + "class_subsampled_raster :" , class_subsampled_raster) print(cyan + "classRasterSubSampling() : " + endC + "centroid_file :" , centroid_file) if debug >= 3: print(cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s : SOUS ECHANTILLONAGE DE %s EN %s CLASSES " %(idx_class+1, len(sub_sampling_class_list), class_to_sub_sample, number_of_sub_samples) + endC) # ETAPE 1/5 : EXTRACTION DU MASQUE BINAIRE DES PIXELS CORRESPONDANT A LA CLASSE expression_masque = "\"im1b1 == %s? 1 : 0\"" %(class_to_sub_sample) command = "otbcli_BandMath -il %s -out %s %s -exp %s" %(classified_image_input, class_mask_raster, CODAGE_8B, expression_masque) if debug >=2: print("\n" + cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 1/5 : Debut de l extraction du masque binaire de la classe %s" %(idx_class+1, len(sub_sampling_class_list),class_to_sub_sample) + endC) print(command) os.system(command) if debug >=2: print(cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 1/5 : Fin de l extraction du masque binaire de la classe %s, disponible ici : %s" %(idx_class+1, len(sub_sampling_class_list),class_to_sub_sample, class_mask_raster) + endC) # TEST POUR SAVOIR SI ON EST EN CAPACITE D'EFFECTUER LE KMEANS number_of_actives_pixels = countPixelsOfValue(class_mask_raster, 1) # Comptage du nombre de pixels disponibles pour effectuer le kmeans if number_of_actives_pixels > (number_of_sub_samples * number_of_actives_pixels_threshold) : # Cas où il y a plus de pixels disponibles pour effectuer le kmeans que le seuil # ETAPE 2/5 : CLASSIFICATION NON SUPERVISEE DES PIXELS CORRESPONDANT A LA CLASSE if debug >= 3: print("\n" + cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 2/5 : Il y a assez de pixels pour faire le sous echantillonage : %s sur %s requis au minimum " %(idx_class+1, len(sub_sampling_class_list), number_of_actives_pixels, int(number_of_sub_samples) * number_of_actives_pixels_threshold) + endC) if debug >=2: print("\n" + cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 2/5 : Debut du sous echantillonage par classification non supervisee en %s classes " %(idx_class+1, len(sub_sampling_class_list), number_of_sub_samples) + endC) # appel du kmeans input_mask_list = [] input_mask_list.append(class_mask_raster) output_masked_image_list = [] output_masked_image_list.append(class_subsampled_raster) output_centroids_files_list = [] output_centroids_files_list.append(centroid_file) macroclass_sampling_list = [] macroclass_sampling_list.append(number_of_sub_samples) macroclass_labels_list = [] macroclass_labels_list.append(subclass_label) applyKmeansMasks(satellite_image_input, input_mask_list, "", "", output_masked_image_list, output_centroids_files_list, macroclass_sampling_list, macroclass_labels_list, no_data_value, path_time_log, 200, 1, -1, 0.0, rand_otb, ram_otb, number_of_actives_pixels_threshold, extension_raster, save_results_intermediate, overwrite) if debug >=2: print(cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 2/5 : Fin du sous echantillonage par classification non supervisee en %s classes, disponible ici %s : " %(idx_class+1, len(sub_sampling_class_list), number_of_sub_samples, class_subsampled_raster) + endC) # ETAPE 3/5 : INTEGRATION DES NOUVELLES SOUS CLASSES DANS LA TABLE DE REALLOCATION # Ouveture du fichier table de proposition pour re-ecriture for i in range(number_of_sub_samples): class_values_list.append(subclass_label + i) text_new_table += str(subclass_label + i) + ";" + str(subclass_label + i) + "; METTRE A JOUR MANUELLEMENT (origine : " + str(class_to_sub_sample) + ")" + "\n" # ETAPE 4/5 : APPLICATION DU SOUS ECHANTILLONAGE AU RESULTAT DE CLASSIFICATION expression_application_sous_echantillonage = "\"im1b1 == %s? im2b1 : im1b1\"" %(class_to_sub_sample) command = "otbcli_BandMath -il %s %s -out %s %s -exp %s" %(image_to_sub_sample, class_subsampled_raster, image_output_temp, CODAGE, expression_application_sous_echantillonage) if debug >=2: print("\n" + cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 4/5 : Debut de l application du sous echantillonage present dans %s sur %s" %(idx_class+1, len(sub_sampling_class_list), class_subsampled_raster, classified_image_input) + endC) print(command) os.system(command) if debug >=2: print(cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 4/5 : Fin de l application du sous echantillonage present dans %s sur %s, sortie disponible ici : %s" %(idx_class+1, len(sub_sampling_class_list), class_subsampled_raster, classified_image_input, image_output_temp) + endC) # ETAPE 5/5 : GESTION DES RENOMMAGES ET SUPPRESSIONS if debug >=2: print("\n" + cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 5/5 : Debut du renommage et suppression des dossiers intermediaires" %(idx_class+1, len(sub_sampling_class_list)) + endC) if debug >=3 : print("\n" + green + "classified image input: %s" %(classified_image_input) + endC) print("\n" + green + "image to sub sample: %s" %(image_to_sub_sample) + endC) print("\n" + green + "image temp : %s" %(image_output_temp) + endC) print("\n" + green + "image output : %s" %(image_output) + endC) # Si l'image d'entrée et l'image de sorte sont le même fichier on efface le fichier d'entrée pour le re-creer avec le fichier re-travaillé if image_output == classified_image_input and os.path.isfile(classified_image_input) : removeFile(classified_image_input) os.rename(image_output_temp,image_output) processing_pass_first = True # SUPPRESSION DES FICHIERS TEMPORAIRES if not save_results_intermediate : if os.path.isfile(class_mask_raster) : removeFile(class_mask_raster) if os.path.isfile(class_subsampled_raster) : removeFile(class_subsampled_raster) if os.path.isfile(centroid_file) : removeFile(centroid_file) if debug >=2: print(cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 5/5 : Fin du renommage et suppression des dossiers intermediaires" %(idx_class+1, len(sub_sampling_class_list)) + endC) else: # Cas où il n'y a pas assez de pixels pour effectuer le kmeans if debug >=2: print("\n" + cyan + "classRasterSubSampling() : " + bold + yellow + "CLASSE %s/%s - ETAPE 2/5 : Nombre insuffisant de pixels disponibles pour appliquer le kmeans : %s sur %s requis au minimum " %(idx_class+1, len(sub_sampling_class_list), number_of_actives_pixels, int(number_of_sub_samples) * number_of_actives_pixels_threshold) + endC) print(cyan + "classRasterSubSampling() : " + bold + yellow + "CLASSE %s/%s - ETAPE 2/5 : SOUS ECHANTILLONAGE NON APPLIQUE A LA CLASSE %s" %(idx_class+1, len(sub_sampling_class_list), class_to_sub_sample) + endC + "\n") # MISE A JOUR DU FICHIER image_to_sub_sample if idx_class == 0: processing_pass_first = False # MISE A JOUR DE LA TABLE DE REALLOCATION text_new_table += str(class_to_sub_sample) + ";" + str(class_to_sub_sample) + ";CLASSE TROP PETITE POUR SOUS ECHANTILLONAGE" + "\n" # SUPPRESSION DU MASQUE if not save_results_intermediate and os.path.isfile(class_mask_raster) : removeFile(class_mask_raster) else: shutil.copy2(classified_image_input, image_output) # Copie du raster d'entree si pas de sous-echantillonnage # Ecriture de la nouvelle table dans le fichier writeTextFile(table_reallocation, text_new_table) # SUPPRESSION DU DOSSIER ET DES FICHIERS TEMPORAIRES if not save_results_intermediate and os.path.isdir(os.path.dirname(temp_sub_sampling_path)) : shutil.rmtree(os.path.dirname(temp_sub_sampling_path)) print(cyan + "classRasterSubSampling() : " + bold + green + "END\n" + endC) # Mise à jour du Log ending_event = "classRasterSubSampling() : Micro class subsampling on classification image ending : " timeLine(path_time_log,ending_event) return
def selectSamples(image_input_list, sample_image_input, vector_output, table_statistics_output, sampler_strategy, select_ratio_floor, ratio_per_class_dico, name_column, no_data_value, path_time_log, rand_seed=0, ram_otb=0, epsg=2154, format_vector='ESRI Shapefile', extension_vector=".shp", save_results_intermediate=False, overwrite=True) : # Mise à jour du Log starting_event = "selectSamples() : Select points in raster mask macro input starting : " timeLine(path_time_log, starting_event) if debug >= 3: print(cyan + "selectSamples() : " + endC + "image_input_list : " + str(image_input_list) + endC) print(cyan + "selectSamples() : " + endC + "sample_image_input : " + str(sample_image_input) + endC) print(cyan + "selectSamples() : " + endC + "vector_output : " + str(vector_output) + endC) print(cyan + "selectSamples() : " + endC + "table_statistics_output : " + str(table_statistics_output) + endC) print(cyan + "selectSamples() : " + endC + "sampler_strategy : " + str(sampler_strategy) + endC) print(cyan + "selectSamples() : " + endC + "select_ratio_floor : " + str(select_ratio_floor) + endC) print(cyan + "selectSamples() : " + endC + "ratio_per_class_dico : " + str(ratio_per_class_dico) + endC) print(cyan + "selectSamples() : " + endC + "name_column : " + str(name_column) + endC) print(cyan + "selectSamples() : " + endC + "no_data_value : " + str(no_data_value) + endC) print(cyan + "selectSamples() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "selectSamples() : " + endC + "rand_seed : " + str(rand_seed) + endC) print(cyan + "selectSamples() : " + endC + "ram_otb : " + str(ram_otb) + endC) print(cyan + "selectSamples() : " + endC + "epsg : " + str(epsg) + endC) print(cyan + "selectSamples() : " + endC + "format_vector : " + str(format_vector) + endC) print(cyan + "selectSamples() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "selectSamples() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "selectSamples() : " + endC + "overwrite : " + str(overwrite) + endC) # Constantes EXT_XML = ".xml" SUFFIX_SAMPLE = "_sample" SUFFIX_STATISTICS = "_statistics" SUFFIX_POINTS = "_points" SUFFIX_VALUE = "_value" BAND_NAME = "band_" COLUMN_CLASS = "class" COLUMN_ORIGINFID = "originfid" NB_POINTS = "nb_points" AVERAGE = "average" STANDARD_DEVIATION = "st_dev" print(cyan + "selectSamples() : " + bold + green + "DEBUT DE LA SELECTION DE POINTS" + endC) # Definition variables et chemins repertory_output = os.path.dirname(vector_output) filename = os.path.splitext(os.path.basename(vector_output))[0] sample_points_output = repertory_output + os.sep + filename + SUFFIX_SAMPLE + extension_vector file_statistic_points = repertory_output + os.sep + filename + SUFFIX_STATISTICS + SUFFIX_POINTS + EXT_XML if debug >= 3: print(cyan + "selectSamples() : " + endC + "file_statistic_points : " + str(file_statistic_points) + endC) # 0. EXISTENCE DU FICHIER DE SORTIE #---------------------------------- # Si le fichier vecteur points de sortie existe deja et que overwrite n'est pas activé check = os.path.isfile(vector_output) if check and not overwrite: print(bold + yellow + "Samples points already done for file %s and will not be calculated again." %(vector_output) + endC) else: # Si non ou si la vérification est désactivée : creation du fichier d'échantillons points # Suppression de l'éventuel fichier existant if check: try: removeVectorFile(vector_output) except Exception: pass # Si le fichier ne peut pas être supprimé, on suppose qu'il n'existe pas et on passe à la suite if os.path.isfile(table_statistics_output) : try: removeFile(table_statistics_output) except Exception: pass # Si le fichier ne peut pas être supprimé, on suppose qu'il n'existe pas et on passe à la suite # 1. STATISTIQUE SUR L'IMAGE DES ECHANTILLONS RASTEUR #---------------------------------------------------- if debug >= 3: print(cyan + "selectSamples() : " + bold + green + "Start statistique sur l'image des echantillons rasteur..." + endC) id_micro_list = identifyPixelValues(sample_image_input) if 0 in id_micro_list : id_micro_list.remove(0) min_micro_class_nb_points = -1 min_micro_class_label = 0 infoStructPointSource_dico = {} writeTextFile(file_statistic_points, '<?xml version="1.0" ?>\n') appendTextFileCR(file_statistic_points, '<GeneralStatistics>') appendTextFileCR(file_statistic_points, ' <Statistic name="pointsPerClassRaw">') if debug >= 2: print("Nombre de points par micro classe :" + endC) for id_micro in id_micro_list : nb_pixels = countPixelsOfValue(sample_image_input, id_micro) if debug >= 2: print("MicroClass : " + str(id_micro) + ", nb_points = " + str(nb_pixels)) appendTextFileCR(file_statistic_points, ' <StatisticPoints class="%d" value="%d" />' %(id_micro, nb_pixels)) if min_micro_class_nb_points == -1 or min_micro_class_nb_points > nb_pixels : min_micro_class_nb_points = nb_pixels min_micro_class_label = id_micro infoStructPointSource_dico[id_micro] = StructInfoMicoClass() infoStructPointSource_dico[id_micro].label_class = id_micro infoStructPointSource_dico[id_micro].nb_points = nb_pixels infoStructPointSource_dico[id_micro].info_points_list = [] del nb_pixels if debug >= 2: print("MicroClass min points find : " + str(min_micro_class_label) + ", nb_points = " + str(min_micro_class_nb_points)) appendTextFileCR(file_statistic_points, ' </Statistic>') pending_event = cyan + "selectSamples() : " + bold + green + "End statistique sur l'image des echantillons rasteur. " + endC if debug >= 3: print(pending_event) timeLine(path_time_log,pending_event) # 2. CHARGEMENT DE L'IMAGE DES ECHANTILLONS #------------------------------------------ if debug >= 3: print(cyan + "selectSamples() : " + bold + green + "Start chargement de l'image des echantillons..." + endC) # Information image cols, rows, bands = getGeometryImage(sample_image_input) xmin, xmax, ymin, ymax = getEmpriseImage(sample_image_input) pixel_width, pixel_height = getPixelWidthXYImage(sample_image_input) projection_input = getProjectionImage(sample_image_input) if projection_input == None or projection_input == 0 : projection_input = epsg else : projection_input = int(projection_input) pixel_width = abs(pixel_width) pixel_height = abs(pixel_height) # Lecture des données raw_data = getRawDataImage(sample_image_input) if debug >= 3: print("projection = " + str(projection_input)) print("cols = " + str(cols)) print("rows = " + str(rows)) # Creation d'une structure dico contenent tous les points différents de zéro progress = 0 pass_prog = False for y_row in range(rows) : for x_col in range(cols) : value_class = raw_data[y_row][x_col] if value_class != 0 : infoStructPointSource_dico[value_class].info_points_list.append(x_col + (y_row * cols)) # Barre de progression if debug >= 4: if ((float(y_row) / rows) * 100.0 > progress) and not pass_prog : progress += 1 pass_prog = True print("Progression => " + str(progress) + "%") if ((float(y_row) / rows) * 100.0 > progress + 1) : pass_prog = False del raw_data pending_event = cyan + "selectSamples() : " + bold + green + "End chargement de l'image des echantillons. " + endC if debug >= 3: print(pending_event) timeLine(path_time_log,pending_event) # 3. SELECTION DES POINTS D'ECHANTILLON #-------------------------------------- if debug >= 3: print(cyan + "selectSamples() : " + bold + green + "Start selection des points d'echantillon..." + endC) appendTextFileCR(file_statistic_points, ' <Statistic name="pointsPerClassSelect">') # Rendre deterministe la fonction aléatoire de random.sample if rand_seed > 0: random.seed( rand_seed ) # Pour toute les micro classes for id_micro in id_micro_list : # Selon la stategie de selection nb_points_ratio = 0 while switch(sampler_strategy.lower()): if case('all'): # Le mode de selection 'all' est choisi nb_points_ratio = infoStructPointSource_dico[id_micro].nb_points infoStructPointSource_dico[id_micro].sample_points_list = range(nb_points_ratio) break if case('percent'): # Le mode de selection 'percent' est choisi id_macro_class = int(math.floor(id_micro / 100) * 100) select_ratio_class = ratio_per_class_dico[id_macro_class] nb_points_ratio = int(infoStructPointSource_dico[id_micro].nb_points * select_ratio_class / 100) infoStructPointSource_dico[id_micro].sample_points_list = random.sample(range(infoStructPointSource_dico[id_micro].nb_points), nb_points_ratio) break if case('mixte'): # Le mode de selection 'mixte' est choisi nb_points_ratio = int(infoStructPointSource_dico[id_micro].nb_points * select_ratio_floor / 100) if id_micro == min_micro_class_label : # La plus petite micro classe est concervée intégralement infoStructPointSource_dico[id_micro].sample_points_list = range(infoStructPointSource_dico[id_micro].nb_points) nb_points_ratio = min_micro_class_nb_points elif nb_points_ratio <= min_micro_class_nb_points : # Les micro classes dont le ratio de selection est inferieur au nombre de points de la plus petite classe sont égement conservées intégralement infoStructPointSource_dico[id_micro].sample_points_list = random.sample(range(infoStructPointSource_dico[id_micro].nb_points), min_micro_class_nb_points) nb_points_ratio = min_micro_class_nb_points else : # Pour toutes les autres micro classes tirage aleatoire d'un nombre de points correspondant au ratio infoStructPointSource_dico[id_micro].sample_points_list = random.sample(range(infoStructPointSource_dico[id_micro].nb_points), nb_points_ratio) break break if debug >= 2: print("MicroClass = " + str(id_micro) + ", nb_points_ratio " + str(nb_points_ratio)) appendTextFileCR(file_statistic_points, ' <StatisticPoints class="%d" value="%d" />' %(id_micro, nb_points_ratio)) appendTextFileCR(file_statistic_points, ' </Statistic>') appendTextFileCR(file_statistic_points, '</GeneralStatistics>') pending_event = cyan + "selectSamples() : " + bold + green + "End selection des points d'echantillon. " + endC if debug >= 3: print(pending_event) timeLine(path_time_log,pending_event) # 4. PREPARATION DES POINTS D'ECHANTILLON #---------------------------------------- if debug >= 3: print(cyan + "selectSamples() : " + bold + green + "Start preparation des points d'echantillon..." + endC) # Création du dico de points points_random_value_dico = {} index_dico_point = 0 for micro_class in infoStructPointSource_dico : micro_class_struct = infoStructPointSource_dico[micro_class] label_class = micro_class_struct.label_class point_attr_dico = {name_column:int(label_class), COLUMN_CLASS:int(label_class), COLUMN_ORIGINFID:0} for id_point in micro_class_struct.sample_points_list: # Recuperer les valeurs des coordonnees des points coor_x = float(xmin + (int(micro_class_struct.info_points_list[id_point] % cols) * pixel_width)) + (pixel_width / 2.0) coor_y = float(ymax - (int(micro_class_struct.info_points_list[id_point] / cols) * pixel_height)) - (pixel_height / 2.0) points_random_value_dico[index_dico_point] = [[coor_x, coor_y], point_attr_dico] del coor_x del coor_y index_dico_point += 1 del point_attr_dico del infoStructPointSource_dico pending_event = cyan + "selectSamples() : " + bold + green + "End preparation des points d'echantillon. " + endC if debug >=3: print(pending_event) timeLine(path_time_log,pending_event) # 5. CREATION DU FICHIER SHAPE DE POINTS D'ECHANTILLON #----------------------------------------------------- if debug >= 3: print(cyan + "selectSamples() : " + bold + green + "Start creation du fichier shape de points d'echantillon..." + endC) # Définir les attibuts du fichier résultat attribute_dico = {name_column:ogr.OFTInteger, COLUMN_CLASS:ogr.OFTInteger, COLUMN_ORIGINFID:ogr.OFTInteger} # Creation du fichier shape createPointsFromCoordList(attribute_dico, points_random_value_dico, sample_points_output, projection_input, format_vector) del attribute_dico del points_random_value_dico pending_event = cyan + "selectSamples() : " + bold + green + "End creation du fichier shape de points d'echantillon. " + endC if debug >=3: print(pending_event) timeLine(path_time_log,pending_event) # 6. EXTRACTION DES POINTS D'ECHANTILLONS #----------------------------------------- if debug >= 3: print(cyan + "selectSamples() : " + bold + green + "Start extraction des points d'echantillon dans l'image..." + endC) # Cas ou l'on a une seule image if len(image_input_list) == 1: # Extract sample image_input = image_input_list[0] command = "otbcli_SampleExtraction -in %s -vec %s -outfield prefix -outfield.prefix.name %s -out %s -field %s" %(image_input, sample_points_output, BAND_NAME, vector_output, name_column) if ram_otb > 0: command += " -ram %d" %(ram_otb) if debug >= 3: print(command) exitCode = os.system(command) if exitCode != 0: raise NameError(cyan + "selectSamples() : " + bold + red + "An error occured during otbcli_SampleExtraction command. See error message above." + endC) # Cas de plusieurs imagettes else : # Le repertoire de sortie repertory_output = os.path.dirname(vector_output) # Initialisation de la liste pour le multi-threading et la liste de l'ensemble des echantions locaux thread_list = [] vector_local_output_list = [] # Obtenir l'emprise des images d'entrées pour redecouper le vecteur d'echantillon d'apprentissage pour chaque image for image_input in image_input_list : # Definition des fichiers sur emprise local file_name = os.path.splitext(os.path.basename(image_input))[0] emprise_local_sample = repertory_output + os.sep + file_name + SUFFIX_SAMPLE + extension_vector vector_sample_local_output = repertory_output + os.sep + file_name + SUFFIX_VALUE + extension_vector vector_local_output_list.append(vector_sample_local_output) # Gestion sans thread... #SampleLocalExtraction(image_input, sample_points_output, emprise_local_sample, vector_sample_local_output, name_column, BAND_NAME, ram_otb, format_vector, extension_vector, save_results_intermediate) # Gestion du multi threading thread = threading.Thread(target=SampleLocalExtraction, args=(image_input, sample_points_output, emprise_local_sample, vector_sample_local_output, name_column, BAND_NAME, ram_otb, format_vector, extension_vector, save_results_intermediate)) thread.start() thread_list.append(thread) # Extraction des echantions points des images try: for thread in thread_list: thread.join() except: print(cyan + "selectSamples() : " + bold + red + "Erreur lors de l'éextaction des valeurs d'echantion : impossible de demarrer le thread" + endC, file=sys.stderr) # Fusion des multi vecteurs de points contenant les valeurs des bandes de l'image fusionVectors(vector_local_output_list, vector_output, format_vector) # Clean des vecteurs point sample local file for vector_sample_local_output in vector_local_output_list : removeVectorFile(vector_sample_local_output) if debug >= 3: print(cyan + "selectSamples() : " + bold + green + "End extraction des points d'echantillon dans l'image." + endC) # 7. CALCUL DES STATISTIQUES SUR LES VALEURS DES POINTS D'ECHANTILLONS SELECTIONNEES #----------------------------------------------------------------------------------- if debug >= 3: print(cyan + "selectSamples() : " + bold + green + "Start calcul des statistiques sur les valeurs des points d'echantillons selectionnees..." + endC) # Si le calcul des statistiques est demandé presence du fichier stat if table_statistics_output != "": # On récupère la liste de données pending_event = cyan + "selectSamples() : " + bold + green + "Encours calcul des statistiques part1... " + endC if debug >=4: print(pending_event) timeLine(path_time_log,pending_event) attribute_name_dico = {} name_field_value_list = [] names_attribut_list = getAttributeNameList(vector_output, format_vector) if debug >=4: print("names_attribut_list = " + str(names_attribut_list)) attribute_name_dico[name_column] = ogr.OFTInteger for name_attribut in names_attribut_list : if BAND_NAME in name_attribut : attribute_name_dico[name_attribut] = ogr.OFTReal name_field_value_list.append(name_attribut) name_field_value_list.sort() res_values_dico = getAttributeValues(vector_output, None, None, attribute_name_dico, format_vector) del attribute_name_dico # Trie des données par identifiant micro classes pending_event = cyan + "selectSamples() : " + bold + green + "Encours calcul des statistiques part2... " + endC if debug >=4: print(pending_event) timeLine(path_time_log,pending_event) data_value_by_micro_class_dico = {} stat_by_micro_class_dico = {} # Initilisation du dico complexe for id_micro in id_micro_list : data_value_by_micro_class_dico[id_micro] = {} stat_by_micro_class_dico[id_micro] = {} for name_field_value in res_values_dico : if name_field_value != name_column : data_value_by_micro_class_dico[id_micro][name_field_value] = [] stat_by_micro_class_dico[id_micro][name_field_value] = {} stat_by_micro_class_dico[id_micro][name_field_value][AVERAGE] = 0.0 stat_by_micro_class_dico[id_micro][name_field_value][STANDARD_DEVIATION] = 0.0 # Trie des valeurs pending_event = cyan + "selectSamples() : " + bold + green + "Encours calcul des statistiques part3... " + endC if debug >=4: print(pending_event) timeLine(path_time_log,pending_event) for index in range(len(res_values_dico[name_column])) : id_micro = res_values_dico[name_column][index] for name_field_value in name_field_value_list : data_value_by_micro_class_dico[id_micro][name_field_value].append(res_values_dico[name_field_value][index]) del res_values_dico # Calcul des statistiques pending_event = cyan + "selectSamples() : " + bold + green + "Encours calcul des statistiques part4... " + endC if debug >=4: print(pending_event) timeLine(path_time_log,pending_event) for id_micro in id_micro_list : for name_field_value in name_field_value_list : try : stat_by_micro_class_dico[id_micro][name_field_value][AVERAGE] = average(data_value_by_micro_class_dico[id_micro][name_field_value]) except: stat_by_micro_class_dico[id_micro][name_field_value][AVERAGE] = 0 try : stat_by_micro_class_dico[id_micro][name_field_value][STANDARD_DEVIATION] = standardDeviation(data_value_by_micro_class_dico[id_micro][name_field_value]) except: stat_by_micro_class_dico[id_micro][name_field_value][STANDARD_DEVIATION] = 0 try : stat_by_micro_class_dico[id_micro][name_field_value][NB_POINTS] = len(data_value_by_micro_class_dico[id_micro][name_field_value]) except: stat_by_micro_class_dico[id_micro][name_field_value][NB_POINTS] = 0 del data_value_by_micro_class_dico # Creation du fichier statistique .csv pending_event = cyan + "selectSamples() : " + bold + green + "Encours calcul des statistiques part5... " + endC if debug >= 4: print(pending_event) timeLine(path_time_log,pending_event) text_csv = " Micro classes ; Champs couche image ; Nombre de points ; Moyenne ; Ecart type \n" writeTextFile(table_statistics_output, text_csv) for id_micro in id_micro_list : for name_field_value in name_field_value_list : # Ecriture du fichier text_csv = " %d " %(id_micro) text_csv += " ; %s" %(name_field_value) text_csv += " ; %d" %(stat_by_micro_class_dico[id_micro][name_field_value][NB_POINTS]) text_csv += " ; %f" %(stat_by_micro_class_dico[id_micro][name_field_value][AVERAGE]) text_csv += " ; %f" %(stat_by_micro_class_dico[id_micro][name_field_value][STANDARD_DEVIATION]) appendTextFileCR(table_statistics_output, text_csv) del name_field_value_list else : if debug >=3: print(cyan + "selectSamples() : " + bold + green + "Pas de calcul des statistiques sur les valeurs des points demander!!!." + endC) del id_micro_list pending_event = cyan + "selectSamples() : " + bold + green + "End calcul des statistiques sur les valeurs des points d'echantillons selectionnees. " + endC if debug >= 3: print(pending_event) timeLine(path_time_log,pending_event) # 8. SUPRESSION DES FICHIERS INTERMEDIAIRES #------------------------------------------ if not save_results_intermediate: if os.path.isfile(sample_points_output) : removeVectorFile(sample_points_output) print(cyan + "selectSamples() : " + bold + green + "FIN DE LA SELECTION DE POINTS" + endC) # Mise à jour du Log ending_event = "selectSamples() : Select points in raster mask macro input ending : " timeLine(path_time_log,ending_event) return