示例#1
0
def computeAreaMicro(repertory_output, table_input_name, data_base_name, micro):
    sql_temporary_file = repertory_output + os.sep + "spatialiteTemp.txt"

    requete = sqlSurfaceMicro(table_input_name, "ID", micro, data_base_name)
    exitCode = os.system("%s > %s"%(requete,sql_temporary_file))
    if exitCode != 0:
        raise NameError(cyan + "computeAreaMicro() : " + bold + red + "An error occured during fileCreation command. See error message above." + endC)
    # Calculer la surface de la microclasse
    area_micro = float(readTextFileBySeparator(sql_temporary_file, " ")[0][0])
    removeFile(sql_temporary_file)

    return area_micro
示例#2
0
def readQualityIndicatorsFile(indicators_input_file) :
    print(cyan + "readQualityIndicatorsFile() : " + bold + green + "Indicators quality file reading... \n" + endC)

    # creer un dictionaire contenant tous les indicateurs de classes et un dictionaire des indicateurs généraux contenu dans le fichier
    indicator_macro_dico = []
    indicator_general_dico = {}
    indicator_general_label = []
    indicator_general_value = []

    indicators_list = []
    composants_list = readTextFileBySeparator(indicators_input_file, ";")

    for idx_line in range(len(composants_list)) :
       composant = composants_list[idx_line]
       # cas des indicateurs pour chaque macro classes
       if idx_line < len(composants_list)-2 :
           if debug >= 4:
               print(composant)
           if idx_line == 0 :
               line_zero_list = composant
               for id_elem in range(1, len(line_zero_list)):
                   class_elm = cleanSpaceText(line_zero_list[id_elem])
                   class_dico = {}
                   class_dico[cleanSpaceText(line_zero_list[0])] = class_elm
                   indicator_macro_dico.append(class_dico)
           else :
               line_list = composant
               for id_elem in range(1, len(line_list)):
                   indic_elm = cleanSpaceText(line_list[id_elem])
                   indicator_macro_dico[id_elem-1][cleanSpaceText(line_list[0])] = indic_elm

       # liste (labels) des indicateurs generaux
       elif idx_line == len(composants_list)-1 :
           if debug >= 4:
               print(composant)
           for elem in composant :
               indicator_general_value.append(cleanSpaceText(elem))
       # Valeurs des indicateurs generaux
       else :
           if debug >= 4:
               print(composant)
           for elem in composant :
               indicator_general_label.append(cleanSpaceText(elem))

    # creation dico indicateurs generaux

    for indicator_idx in range(len(indicator_general_label)) :
        indicator_general_dico[indicator_general_label[indicator_idx]] = indicator_general_value[indicator_idx]

    print(cyan + "readQualityIndicatorsFile() : " + bold + green + "Indicators quality file readed \n" + endC)

    # retourne les deux dictionaires
    return indicator_macro_dico,indicator_general_dico
示例#3
0
def readCentroidsFiles(centroids_input_files_list) :
    print(cyan + "readCentroidsFile() : " + bold + green + "Centroids file reading...\n" + endC)

    microclass_centroides_list = []
    for centroids_file in centroids_input_files_list:
        if debug >= 4:
            print("file centroides : " + centroids_file)
        composants_list = readTextFileBySeparator(centroids_file, " ")
        microclass_centroides_list.append(composants_list)
        for composant in composants_list :
           if debug >= 4:
               print(composant)

    print(cyan + "readCentroidsFile() : " + bold + green + "Centroids file readed \n" + endC)

    return microclass_centroides_list
示例#4
0
def relaunchFtp(ftp, file_error, local_path):
    files_list = readTextFileBySeparator(file_error, '\n')
    for files in files_list:
        file_ftp = files[0]
        repertory = os.path.dirname(file_ftp)
        filename = os.path.basename(file_ftp)
        local_filename = local_path + os.sep + file_ftp
        print(cyan + "relaunchFtp() : " + endC + "Tentative de re-chargement de image file : " + file_ftp + endC)
        try:
            ftp.cwd(repertory)
            ftp.retrbinary("RETR " + filename ,open(local_filename, 'wb').write)
            ftp.cwd("/")
        except RuntimeError:
            print(cyan + "relaunchFtp() : " + bold + red + "Rechargement impossible du fichier : " + file_ftp + endC, file=sys.stderr)
            continue
    return
示例#5
0
def computeAverageAreaMacro(repertory_output, class_labels_list, table_input_name, data_base_name):

    average_area_macro_list = []
    sql_temporary_file = repertory_output + os.sep + "spatialiteTemp.txt"

    for class_label in class_labels_list:
        requete = sqlSurfaceAverageMacro(table_input_name, "ID", class_label, data_base_name)
        exitCode = os.system("%s > %s"%(requete,sql_temporary_file))
        if exitCode != 0:
            raise NameError(cyan + "computeAverageAreaMacro() : " + bold + red + "An error occured during file creation. See error message above." + endC)
        requete_result = readTextFileBySeparator(sql_temporary_file, " ")
        print(requete_result)
        if requete_result == []:
            average_area_macro_list.append(0)
        else:
            average_area_macro_list.append(float(requete_result[0][0]))
        removeFile(sql_temporary_file)

    return average_area_macro_list
示例#6
0
def classRasterSubSampling(satellite_image_input, classified_image_input, image_output, table_reallocation, sub_sampling_number, no_data_value, path_time_log, rand_otb=0, ram_otb=0, number_of_actives_pixels_threshold=8000, extension_raster=".tif", save_results_intermediate=False, overwrite=True) :

    # Mise à jour du Log
    starting_event = "classRasterSubSampling() : Micro class subsampling on classification image starting : "
    timeLine(path_time_log,starting_event)

    if debug >= 3:
       print(cyan + "classRasterSubSampling() : " + endC + "satellite_image_input : " +  str(satellite_image_input) + endC)
       print(cyan + "classRasterSubSampling() : " + endC + "classified_image_input : " +  str(classified_image_input) + endC)
       print(cyan + "classRasterSubSampling() : " + endC + "image_output : " + str(image_output) + endC)
       print(cyan + "classRasterSubSampling() : " + endC + "table_reallocation : " + str(table_reallocation) + endC)
       print(cyan + "classRasterSubSampling() : " + endC + "sub_sampling_number : " + str(sub_sampling_number) + endC)
       print(cyan + "classRasterSubSampling() : " + endC + "no_data_value : " + str(no_data_value) + endC)
       print(cyan + "classRasterSubSampling() : " + endC + "path_time_log : " + str(path_time_log) + endC)
       print(cyan + "classRasterSubSampling() : " + endC + "rand_otb : " + str(rand_otb) + endC)
       print(cyan + "classRasterSubSampling() : " + endC + "ram_otb : " + str(ram_otb) + endC)
       print(cyan + "classRasterSubSampling() : " + endC + "number_of_actives_pixels_threshold : " + str(number_of_actives_pixels_threshold) + endC)
       print(cyan + "classRasterSubSampling() : " + endC + "extension_raster : " + str(extension_raster) + endC)
       print(cyan + "classRasterSubSampling() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC)
       print(cyan + "classRasterSubSampling() : " + endC + "overwrite : " + str(overwrite) + endC)

    # Constantes
    CODAGE = "uint16"
    CODAGE_8B = "uint8"
    TEMP = "TempSubSampling_"
    MASK_SUF = "_Mask"
    SUB_SAMPLE_SUF = "_SubSampled"
    CENTROID_SUF = "_Centroids"
    TEMP_OUT = "_temp_out"
    EXTENSION_TXT = ".txt"

    # Contenu de la nouvelle table
    text_new_table = ""

    # CREATION DES NOMS DE CHEMINS UTILES
    name = os.path.splitext(os.path.basename(image_output))[0]
    input_classified_image_path = os.path.dirname(classified_image_input)                      # Ex : D2_Par_Zone/Paysage_01/Corr_2/Resultats/Temp/
    temp_sub_sampling_path = input_classified_image_path + os.sep + TEMP + name + os.sep       # Dossier contenant les fichiers temporaires de cette brique. Ex : D2_Par_Zone/Paysage_01/Corr_2/Resultats/Temp/Temp_Sub_Sampling/
    input_classified_image_complete_name = os.path.basename(classified_image_input)            # Ex : Paysage_01_raw.tif
    input_classified_image_name = os.path.splitext(input_classified_image_complete_name)[0]    # Ex : Paysage_01_raw
    input_classified_image_extend = os.path.splitext(input_classified_image_complete_name)[1]  # Ex : .tif
    image_output_temp = os.path.splitext(image_output)[0] + TEMP_OUT + extension_raster        # Ex : D2_Par_Zone/Paysage_01/Corr_2/Resultats/Temp/Temp_Sub_Sampling/Paysage_01_raw_temp.tif

    # Création de temp_sub_sampling_path s'il n'existe pas
    if not os.path.isdir(os.path.dirname(temp_sub_sampling_path)) :
        os.makedirs(os.path.dirname(temp_sub_sampling_path))

    print(cyan + "classRasterSubSampling() : " + bold + green + "START ...\n" + endC)

    # Lecture du fichier table de proposition
    supp_class_list, reaff_class_list, macro_reaff_class_list, sub_sampling_class_list, sub_sampling_number_list = readReallocationTable(table_reallocation, sub_sampling_number)      # Fonction de Lib_text
    info_table_list = readTextFileBySeparator(table_reallocation, "\n")

    # Recherche de la liste des micro classes contenu dans le fichier de classification d'entrée
    class_values_list = identifyPixelValues(classified_image_input)

    # Supression dans la table des lignes correspondant aux actions "-2"
    for ligne_table in info_table_list:
        if not "-2" in ligne_table[0]:
            text_new_table += str(ligne_table[0]) + "\n"

    if debug >= 3:
        print("supp_class_list : " + str(supp_class_list))
        print("reaff_class_list : " + str(reaff_class_list))
        print("macro_reaff_class_list : " + str(macro_reaff_class_list))
        print("sub_sampling_class_list : " + str(sub_sampling_class_list))
        print("sub_sampling_number_list : " + str(sub_sampling_number_list))

    # Dans cettre brique, on ne s'intéresse qu'à la partie sous echantillonage
    # Gestion du cas de suppression
    if len(supp_class_list) > 0:
        print(cyan + "classRasterSubSampling() : " + bold + yellow + "ATTENTION : Les classes ne sont pas supprimees pour le fichier classification format raster." + '\n' + endC)

    # Gestion du cas de réaffectation
    if len(reaff_class_list) > 0:
         print(cyan + "classRasterSubSampling() : " + bold + yellow + "ATTENTION : la brique SpecificSubSampling ne traite pas les reaffectation. A l'issue de cette brique, verifier la table de reallocation et executer la brique de reallocation." + '\n' + endC)

    if len(sub_sampling_class_list) > 0 :

        if debug >= 3:
           print(cyan + "classRasterSubSampling() : " + bold + green + "DEBUT DU SOUS ECHANTILLONAGE DES CLASSES %s " %(sub_sampling_class_list) + endC)

        # Parcours des classes à sous échantilloner
        processing_pass_first = False
        for idx_class in range(len(sub_sampling_class_list)) :

            # INITIALISATION DU TRAITEMENT DE LA CLASSE

            # Classe à sous échantilloner. Ex : 21008
            class_to_sub_sample = sub_sampling_class_list[idx_class]
            if idx_class == 0 or not processing_pass_first :
                # Image à reclassifier : classified_image_input au premier tour
                image_to_sub_sample = classified_image_input
            else :
                # Image à reclassifier : la sortie de la boucle précédente ensuite
                image_to_sub_sample = image_output

            # determiner le label disponible de la classe
            base_subclass_label = int(class_to_sub_sample/100)*100
            subclass_label = base_subclass_label
            for class_value in class_values_list:
                if (class_value > subclass_label) and (class_value < base_subclass_label + 100) :
                    subclass_label = class_value
            subclass_label += 1
            # subclass_label = int(class_to_sub_sample/100)*100 + 20 + class_to_sub_sample%20 * 5
            # Label de départ des sous classes. Formule proposée : 3 premiers chiffres de class_to_sub_sample puis ajout de 20 + 5 * class_to_sub_sample modulo 20. Ex : 21000 -> 21020, 21001-> 21025, 21002-> 21030 etc...
            # Part du principe qu'il y a moins de 20 micro classes et que chacune est sous échantillonnée au maximum en 5 sous parties. Si ce n'est pas le cas : A ADAPTER

            number_of_sub_samples = sub_sampling_number_list[idx_class]    # Nombre de sous classes demandées pour le sous échantillonage de class_to_sub_sample. Ex : 4
            class_mask_raster = temp_sub_sampling_path + input_classified_image_name + "_" + str(class_to_sub_sample) + MASK_SUF + input_classified_image_extend    # Ex : D2_Par_Zone/Paysage_01/Corr_2/Resultats/Temp/Temp_Sub_Sampling/Paysage_01_raw_21008_Mask.tif
            class_subsampled_raster = temp_sub_sampling_path + input_classified_image_name + "_" + str(class_to_sub_sample) + SUB_SAMPLE_SUF + input_classified_image_extend  # Ex : D2_Par_Zone/Paysage_01/Corr_2/Resultats/Temp/Temp_Sub_Sampling/Paysage_01_raw_21008_SubSampled.tif
            centroid_file = temp_sub_sampling_path + input_classified_image_name + "_" + str(class_to_sub_sample) + CENTROID_SUF + EXTENSION_TXT  # Ex : D2_Par_Zone/Paysage_01/Corr_2/Resultats/Temp/Temp_Sub_Sampling/Paysage_01_raw_21008_Centroid.txt

            if debug >= 5:
                print(cyan + "classRasterSubSampling() : " + endC + "class_to_sub_sample :" , class_to_sub_sample)
                print(cyan + "classRasterSubSampling() : " + endC + "subclass_label :" , subclass_label)
                print(cyan + "classRasterSubSampling() : " + endC + "number_of_sub_samples :" , number_of_sub_samples)
                print(cyan + "classRasterSubSampling() : " + endC + "class_mask_raster :" , class_mask_raster)
                print(cyan + "classRasterSubSampling() : " + endC + "class_subsampled_raster :" , class_subsampled_raster)
                print(cyan + "classRasterSubSampling() : " + endC + "centroid_file :" , centroid_file)

            if debug >= 3:
                print(cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s : SOUS ECHANTILLONAGE DE %s EN %s CLASSES " %(idx_class+1, len(sub_sampling_class_list), class_to_sub_sample, number_of_sub_samples) + endC)

            # ETAPE 1/5 : EXTRACTION DU MASQUE BINAIRE DES PIXELS CORRESPONDANT A LA CLASSE
            expression_masque = "\"im1b1 == %s? 1 : 0\"" %(class_to_sub_sample)
            command = "otbcli_BandMath -il %s -out %s %s -exp %s" %(classified_image_input, class_mask_raster, CODAGE_8B, expression_masque)

            if debug >=2:
                print("\n" + cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 1/5 : Debut de l extraction du masque binaire de la classe %s" %(idx_class+1, len(sub_sampling_class_list),class_to_sub_sample) + endC)
                print(command)

            os.system(command)

            if debug >=2:
                print(cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 1/5 : Fin de l extraction du masque binaire de la classe %s, disponible ici : %s" %(idx_class+1, len(sub_sampling_class_list),class_to_sub_sample, class_mask_raster) + endC)

            # TEST POUR SAVOIR SI ON EST EN CAPACITE D'EFFECTUER LE KMEANS
            number_of_actives_pixels = countPixelsOfValue(class_mask_raster, 1)  # Comptage du nombre de pixels disponibles pour effectuer le kmeans
            if number_of_actives_pixels > (number_of_sub_samples * number_of_actives_pixels_threshold) :    # Cas où il y a plus de pixels disponibles pour effectuer le kmeans que le seuil

                # ETAPE 2/5 : CLASSIFICATION NON SUPERVISEE DES PIXELS CORRESPONDANT A LA CLASSE
                if debug >= 3:
                    print("\n" + cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 2/5 : Il y a assez de pixels pour faire le sous echantillonage :  %s sur %s requis au minimum " %(idx_class+1, len(sub_sampling_class_list), number_of_actives_pixels, int(number_of_sub_samples) * number_of_actives_pixels_threshold) + endC)
                if debug >=2:
                    print("\n" + cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 2/5 : Debut du sous echantillonage par classification non supervisee en %s classes " %(idx_class+1, len(sub_sampling_class_list), number_of_sub_samples) + endC)

                # appel du kmeans
                input_mask_list = []
                input_mask_list.append(class_mask_raster)
                output_masked_image_list = []
                output_masked_image_list.append(class_subsampled_raster)
                output_centroids_files_list = []
                output_centroids_files_list.append(centroid_file)
                macroclass_sampling_list = []
                macroclass_sampling_list.append(number_of_sub_samples)
                macroclass_labels_list = []
                macroclass_labels_list.append(subclass_label)
                applyKmeansMasks(satellite_image_input, input_mask_list, "", "", output_masked_image_list, output_centroids_files_list, macroclass_sampling_list, macroclass_labels_list, no_data_value, path_time_log, 200, 1, -1, 0.0, rand_otb, ram_otb, number_of_actives_pixels_threshold, extension_raster, save_results_intermediate, overwrite)

                if debug >=2:
                    print(cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 2/5 : Fin du sous echantillonage par classification non supervisee en %s classes, disponible ici %s : " %(idx_class+1, len(sub_sampling_class_list), number_of_sub_samples, class_subsampled_raster) + endC)

                # ETAPE 3/5 : INTEGRATION DES NOUVELLES SOUS CLASSES DANS LA TABLE DE REALLOCATION
                # Ouveture du fichier table de proposition pour re-ecriture

                for i in range(number_of_sub_samples):
                    class_values_list.append(subclass_label + i)
                    text_new_table += str(subclass_label + i) + ";" + str(subclass_label + i) + "; METTRE A JOUR MANUELLEMENT (origine : " +  str(class_to_sub_sample) + ")" + "\n"

                # ETAPE 4/5 : APPLICATION DU SOUS ECHANTILLONAGE AU RESULTAT DE CLASSIFICATION
                expression_application_sous_echantillonage = "\"im1b1 == %s? im2b1 : im1b1\"" %(class_to_sub_sample)
                command = "otbcli_BandMath -il %s %s -out %s %s -exp %s" %(image_to_sub_sample, class_subsampled_raster, image_output_temp, CODAGE, expression_application_sous_echantillonage)

                if debug >=2:
                    print("\n" + cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 4/5 : Debut de l application du sous echantillonage present dans %s sur %s" %(idx_class+1, len(sub_sampling_class_list), class_subsampled_raster, classified_image_input) + endC)
                    print(command)

                os.system(command)

                if debug >=2:
                    print(cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 4/5 : Fin de l application du sous echantillonage present dans %s sur %s, sortie disponible ici : %s" %(idx_class+1, len(sub_sampling_class_list), class_subsampled_raster, classified_image_input, image_output_temp) + endC)

                # ETAPE 5/5 : GESTION DES RENOMMAGES ET SUPPRESSIONS
                if debug >=2:
                    print("\n" + cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 5/5 : Debut du renommage et suppression des dossiers intermediaires" %(idx_class+1, len(sub_sampling_class_list)) + endC)

                if debug >=3 :
                    print("\n" + green + "classified image input: %s" %(classified_image_input) + endC)
                    print("\n" + green + "image to sub sample: %s" %(image_to_sub_sample) + endC)
                    print("\n" + green + "image temp : %s" %(image_output_temp) + endC)
                    print("\n" + green + "image output : %s" %(image_output) + endC)

                # Si l'image d'entrée et l'image de sorte sont le même fichier on efface le fichier d'entrée pour le re-creer avec le fichier re-travaillé
                if image_output == classified_image_input and os.path.isfile(classified_image_input) :
                    removeFile(classified_image_input)
                os.rename(image_output_temp,image_output)
                processing_pass_first = True

                # SUPPRESSION DES FICHIERS TEMPORAIRES
                if not save_results_intermediate :
                    if os.path.isfile(class_mask_raster) :
                        removeFile(class_mask_raster)
                    if os.path.isfile(class_subsampled_raster) :
                        removeFile(class_subsampled_raster)
                    if os.path.isfile(centroid_file) :
                        removeFile(centroid_file)

                if debug >=2:
                    print(cyan + "classRasterSubSampling() : " + bold + green + "CLASSE %s/%s - ETAPE 5/5 : Fin du renommage et suppression des dossiers intermediaires" %(idx_class+1, len(sub_sampling_class_list)) + endC)

            else:  # Cas où il n'y a pas assez de pixels pour effectuer le kmeans

                if debug >=2:
                    print("\n" + cyan + "classRasterSubSampling() : " + bold + yellow + "CLASSE %s/%s - ETAPE 2/5 : Nombre insuffisant de pixels disponibles pour appliquer le kmeans : %s sur %s requis au minimum " %(idx_class+1, len(sub_sampling_class_list), number_of_actives_pixels, int(number_of_sub_samples) * number_of_actives_pixels_threshold) + endC)
                    print(cyan + "classRasterSubSampling() : " + bold + yellow + "CLASSE %s/%s - ETAPE 2/5 : SOUS ECHANTILLONAGE NON APPLIQUE A LA CLASSE %s" %(idx_class+1, len(sub_sampling_class_list), class_to_sub_sample) + endC + "\n")

                # MISE A JOUR DU FICHIER image_to_sub_sample
                if idx_class == 0:
                    processing_pass_first = False

                # MISE A JOUR DE LA TABLE DE REALLOCATION
                text_new_table += str(class_to_sub_sample) + ";" + str(class_to_sub_sample) + ";CLASSE TROP PETITE POUR SOUS ECHANTILLONAGE" + "\n"

                # SUPPRESSION DU MASQUE
                if not save_results_intermediate and os.path.isfile(class_mask_raster) :
                    removeFile(class_mask_raster)

    else:
        shutil.copy2(classified_image_input, image_output) # Copie du raster d'entree si pas de sous-echantillonnage

    # Ecriture de la nouvelle table dans le fichier
    writeTextFile(table_reallocation, text_new_table)

    # SUPPRESSION DU DOSSIER ET DES FICHIERS TEMPORAIRES
    if not save_results_intermediate and os.path.isdir(os.path.dirname(temp_sub_sampling_path)) :
        shutil.rmtree(os.path.dirname(temp_sub_sampling_path))

    print(cyan + "classRasterSubSampling() : " + bold + green + "END\n" + endC)

    # Mise à jour du Log
    ending_event = "classRasterSubSampling() : Micro class subsampling on classification image ending : "
    timeLine(path_time_log,ending_event)
    return
示例#7
0
def vectorsListToOcs(input_text,
                     output_raster,
                     footprint_vector,
                     reference_raster,
                     codage_raster='uint8',
                     epsg=2154,
                     no_data_value=0,
                     format_raster='GTiff',
                     format_vector='ESRI Shapefile',
                     extension_raster='.tif',
                     extension_vector='.shp',
                     path_time_log='',
                     save_results_intermediate=False,
                     overwrite=True):

    if debug >= 3:
        print(
            '\n' + bold + green +
            "OCS raster à partir d'une liste de vecteurs - Variables dans la fonction :"
            + endC)
        print(cyan + "    vectorsListToOcs() : " + endC + "input_text : " +
              str(input_text) + endC)
        print(cyan + "    vectorsListToOcs() : " + endC + "output_raster : " +
              str(output_raster) + endC)
        print(cyan + "    vectorsListToOcs() : " + endC +
              "footprint_vector : " + str(footprint_vector) + endC)
        print(cyan + "    vectorsListToOcs() : " + endC +
              "reference_raster : " + str(reference_raster) + endC)
        print(cyan + "    vectorsListToOcs() : " + endC + "codage_raster : " +
              str(codage_raster) + endC)
        print(cyan + "    vectorsListToOcs() : " + endC + "epsg : " +
              str(epsg) + endC)
        print(cyan + "    vectorsListToOcs() : " + endC + "no_data_value : " +
              str(no_data_value) + endC)
        print(cyan + "    vectorsListToOcs() : " + endC + "format_raster : " +
              str(format_raster) + endC)
        print(cyan + "    vectorsListToOcs() : " + endC + "format_vector : " +
              str(format_vector) + endC)
        print(cyan + "    vectorsListToOcs() : " + endC +
              "extension_raster : " + str(extension_raster) + endC)
        print(cyan + "    vectorsListToOcs() : " + endC +
              "extension_vector : " + str(extension_vector) + endC)
        print(cyan + "    vectorsListToOcs() : " + endC + "path_time_log : " +
              str(path_time_log) + endC)
        print(cyan + "    vectorsListToOcs() : " + endC +
              "save_results_intermediate : " + str(save_results_intermediate) +
              endC)
        print(cyan + "    vectorsListToOcs() : " + endC + "overwrite : " +
              str(overwrite) + endC + '\n')

    # Définition des constantes
    SUFFIX_TEMP = '_temp'
    SUFFIX_CUT = '_cut'
    SUFFIX_FILTER = '_filter'
    SUFFIX_BUFFER = '_buffer'
    TEXT_SEPARATOR = ':'

    # Mise à jour du log
    starting_event = "vectorsListToOcs() : Début du traitement : "
    timeLine(path_time_log, starting_event)

    print(cyan + "vectorsListToOcs() : " + bold + green +
          "DEBUT DES TRAITEMENTS" + endC + '\n')

    # Définition des variables 'basename'
    output_raster_basename = os.path.basename(
        os.path.splitext(output_raster)[0])
    output_raster_dirname = os.path.dirname(output_raster)

    # Définition des variables temp
    temp_directory = output_raster_dirname + os.sep + output_raster_basename + SUFFIX_TEMP
    temp_raster = temp_directory + os.sep + output_raster_basename + SUFFIX_TEMP + extension_raster

    # Nettoyage des traitements précédents
    if overwrite:
        if debug >= 3:
            print(cyan + "vectorsListToOcs() : " + endC +
                  "Nettoyage des traitements précédents." + '\n')
        removeFile(output_raster)
        cleanTempData(temp_directory)
    else:
        if os.path.exists(output_raster):
            print(cyan + "vectorsListToOcs() : " + bold + yellow +
                  "Le fichier de sortie existe déjà et ne sera pas regénéré." +
                  endC)
            raise
        if not os.path.exixts(temp_directory):
            os.makedirs(temp_directory)
        pass

    # Test de l'emprise des fichiers vecteur d'emprise et raster de référence (le raster doit être de même taille ou plus grand que le vecteur)
    xmin_fpt, xmax_fpt, ymin_fpt, ymax_fpt = getEmpriseFile(
        footprint_vector, format_vector=format_vector)
    xmin_ref, xmax_ref, ymin_ref, ymax_ref = getEmpriseImage(reference_raster)
    if round(xmin_fpt, 4) < round(xmin_ref, 4) or round(xmax_fpt, 4) > round(
            xmax_ref, 4) or round(ymin_fpt, 4) < round(ymin_ref, 4) or round(
                ymax_fpt, 4) > round(ymax_ref, 4):
        print(cyan + "vectorsListToOcs() : " + bold + red +
              "xmin_fpt, xmax_fpt, ymin_fpt, ymax_fpt" + endC,
              xmin_fpt,
              xmax_fpt,
              ymin_fpt,
              ymax_fpt,
              file=sys.stderr)
        print(cyan + "vectorsListToOcs() : " + bold + red +
              "xmin_ref, xmax_ref, ymin_ref, ymax_ref" + endC,
              xmin_ref,
              xmax_ref,
              ymin_ref,
              ymax_ref,
              file=sys.stderr)
        raise NameError(
            cyan + "vectorsListToOcs() : " + bold + red +
            "The extend of the footprint vector (%s) is greater than the reference raster (%s)."
            % (footprint_vector, reference_raster) + endC)

    # Récupération des traitements à faire dans le fichier texte d'entrée
    text_list = readTextFileBySeparator(input_text, TEXT_SEPARATOR)

    ####################################################################

    print(cyan + "vectorsListToOcs() : " + bold + green +
          "Début de la génération de l'OCS raster à partir de vecteurs." +
          endC + '\n')

    # Boucle sur les traitements à réaliser
    for text in text_list:
        idx = text_list.index(text) + 1
        class_label = int(text[0])
        vector_file = text[1]
        if debug >= 3:
            print(cyan + "vectorsListToOcs() : " + endC + bold +
                  "Génération %s/%s : " % (idx, len(text_list)) + endC +
                  "traitement du fichier %s (label %s)." %
                  (vector_file, str(class_label)) + '\n')

        # Gestion des noms des fichiers temporaires
        vector_file_basename = os.path.basename(
            os.path.splitext(vector_file)[0])
        vector_file_cut = temp_directory + os.sep + vector_file_basename + SUFFIX_CUT + extension_vector
        vector_file_filter = temp_directory + os.sep + vector_file_basename + SUFFIX_FILTER + extension_vector
        vector_file_buffer = temp_directory + os.sep + vector_file_basename + SUFFIX_BUFFER + extension_vector
        vector_file_raster = temp_directory + os.sep + vector_file_basename + extension_raster

        # Gestion des variables de traitement (tampon et filtrage SQL)
        try:
            buffer_len = float(text[2])
        except ValueError:
            buffer_len = text[2]
        except Exception:
            buffer_len = ''
        try:
            sql_filter = text[3]
        except Exception:
            sql_filter = ''

        # Découpage à l'emprise de la zone d'étude
        if debug >= 3:
            print(cyan + "vectorsListToOcs() : " + endC +
                  "Découpage à l'emprise de la zone d'étude." + '\n')
        cutVectorAll(footprint_vector,
                     vector_file,
                     vector_file_cut,
                     overwrite=overwrite,
                     format_vector=format_vector)

        # Filtrage SQL (facultatif)
        if sql_filter != '':
            if debug >= 3:
                print(cyan + "vectorsListToOcs() : " + endC +
                      "Application du filtrage SQL : %s." % sql_filter + '\n')
            attr_names_list = getAttributeNameList(vector_file_cut,
                                                   format_vector=format_vector)
            column = "'"
            for attr_name in attr_names_list:
                column += attr_name + ", "
            column = column[:-2]
            column += "'"
            filterSelectDataVector(vector_file_cut,
                                   vector_file_filter,
                                   column,
                                   sql_filter,
                                   overwrite=overwrite,
                                   format_vector=format_vector)
        else:
            vector_file_filter = vector_file_cut

        # Application d'un tampon (facultatif)
        if buffer_len != '' and buffer_len != 0:
            if debug >= 3:
                print(cyan + "vectorsListToOcs() : " + endC +
                      "Application d'un buffer : %s." % buffer_len + '\n')
            if type(buffer_len) is float:
                bufferVector(vector_file_filter,
                             vector_file_buffer,
                             buffer_len,
                             col_name_buf='',
                             fact_buf=1.0,
                             quadsecs=10,
                             format_vector=format_vector)
            else:
                bufferVector(vector_file_filter,
                             vector_file_buffer,
                             0,
                             col_name_buf=buffer_len,
                             fact_buf=1.0,
                             quadsecs=10,
                             format_vector=format_vector)
        else:
            vector_file_buffer = vector_file_filter

        # Rastérisation du vecteur préparé
        if debug >= 3:
            print(cyan + "vectorsListToOcs() : " + endC +
                  "Rastérisation du vecteur préparé." + '\n')
        rasterizeBinaryVector(vector_file_buffer,
                              reference_raster,
                              vector_file_raster,
                              label=class_label,
                              codage=codage_raster)

        # Ajout de l'information dans le raster de sortie
        if debug >= 3:
            print(cyan + "vectorsListToOcs() : " + endC +
                  "Ajout de l'information dans le raster de sortie." + '\n')
        if idx == 1:
            shutil.copy(vector_file_raster, output_raster)
        else:
            removeFile(temp_raster)
            shutil.copy(output_raster, temp_raster)
            removeFile(output_raster)
            expression = "im1b1!=%s ? im1b1 : im2b1" % no_data_value
            rasterCalculator([temp_raster, vector_file_raster],
                             output_raster,
                             expression,
                             codage=codage_raster)

    print(cyan + "vectorsListToOcs() : " + bold + green +
          "Fin de la génération de l'OCS raster à partir de vecteurs." + endC +
          '\n')

    ####################################################################

    # Suppression des fichiers temporaires
    if not save_results_intermediate:
        if debug >= 3:
            print(cyan + "vectorsListToOcs() : " + endC +
                  "Suppression des fichiers temporaires." + '\n')
        deleteDir(temp_directory)

    print(cyan + "vectorsListToOcs() : " + bold + green +
          "FIN DES TRAITEMENTS" + endC + '\n')

    # Mise à jour du log
    ending_event = "vectorsListToOcs() : Fin du traitement : "
    timeLine(path_time_log, ending_event)

    return 0