def test_create_stratigraphy_PLI_pyamg():
    data, bb = load_claudius()
    model = GeologicalModel(bb[0, :], bb[1, :])
    model.set_model_data(data)
    s0 = model.create_and_add_foliation("s0",
                                        interpolatortype="PLI",
                                        nelements=1000,
                                        solver="pyamg",
                                        damp=True)
def test_remove_constraints_PLI():
    data, bb = load_claudius()
    model = GeologicalModel(bb[0, :], bb[1, :])
    model.set_model_data(data)
    s0 = model.create_and_add_foliation("s0",
                                        interpolatortype="FDI",
                                        nelements=1000,
                                        solver="cg",
                                        damp=False)
示例#3
0
def test_create_stratigraphy_PLI_lu():
    data, bb = load_claudius()
    model = GeologicalModel(bb[0, :], bb[1, :])
    model.set_model_data(data)
    s0 = model.create_and_add_foliation('s0',
                                        interpolatortype='PLI',
                                        nelements=1000,
                                        solver='lu',
                                        damp=True)
def test_access_feature_model():
    data, bb = load_claudius()
    model = GeologicalModel(bb[0, :], bb[1, :])
    model.set_model_data(data)
    s0 = model.create_and_add_foliation("s0",
                                        interpolatortype="FDI",
                                        nelements=1000,
                                        solver="fake",
                                        damp=False)
    assert s0 == model["s0"]
示例#5
0
def test_no_fold_frame():
    mdata = pd.concat([data[:100], data[data['feature_name'] == 's1']])
    model = GeologicalModel(boundary_points[0, :], boundary_points[1, :])
    model.set_model_data(mdata)
    fold_frame = model.create_and_add_fold_frame('s1', nelements=10000)
    stratigraphy = model.create_and_add_folded_foliation(
        's0',
        # fold_frame,
        nelements=10000,
        # av_fold_axis=True
        fold_axis=[-6.51626577e-06, -5.00013645e-01, -8.66017526e-01],
        limb_wl=1)
示例#6
0
def test_average_fold_axis():
    mdata = pd.concat([data[:100], data[data["feature_name"] == "s1"]])
    model = GeologicalModel(boundary_points[0, :], boundary_points[1, :])
    model.set_model_data(mdata)
    fold_frame = model.create_and_add_fold_frame("s1", nelements=10000)
    stratigraphy = model.create_and_add_folded_foliation(
        "s0",
        fold_frame,
        nelements=10000,
        av_fold_axis=True
        # fold_axis=[-6.51626577e-06, -5.00013645e-01, -8.66017526e-01],
        # limb_wl=1
    )
示例#7
0
def average_axis():
    data, bb = load_laurent2016()

    model = GeologicalModel(bb[0, :], bb[1, :])
    model.set_model_data(data)
    s2 = model.create_and_add_fold_frame("s2", nelements=10000)

    s1 = model.create_and_add_folded_fold_frame(
        "s1", limb_wl=0.4, av_fold_axis=True, nelements=50000
    )

    s0 = model.create_and_add_folded_fold_frame(
        "s0", limb_wl=1.0, av_fold_axis=True, nelements=50000
    )
示例#8
0
def build_model(m2l_data,
                evaluate=True,
                skip_faults=False,
                unconformities=False,
                fault_params=None,
                foliation_params=None,
                rescale=True,
                skip_features=[],
                **kwargs):
    """[summary]

    [extended_summary]

    Parameters
    ----------
    m2l_data : dict
        [description]
    skip_faults : bool, optional
        [description], by default False
    fault_params : dict, optional
        [description], by default None
    foliation_params : dict, optional
        [description], by default None

    Returns
    -------
    [type]
        [description]
    """
    from LoopStructural import GeologicalModel

    boundary_points = np.zeros((2, 3))
    boundary_points[0, 0] = m2l_data["bounding_box"]["minx"]
    boundary_points[0, 1] = m2l_data["bounding_box"]["miny"]
    boundary_points[0, 2] = m2l_data["bounding_box"]["lower"]
    boundary_points[1, 0] = m2l_data["bounding_box"]["maxx"]
    boundary_points[1, 1] = m2l_data["bounding_box"]["maxy"]
    boundary_points[1, 2] = m2l_data["bounding_box"]["upper"]

    model = GeologicalModel(boundary_points[0, :],
                            boundary_points[1, :],
                            rescale=rescale)
    # m2l_data['data']['val'] /= model.scale_factor
    model.set_model_data(m2l_data["data"])
    if not skip_faults:
        faults = []
        for f in m2l_data["max_displacement"].keys():
            if model.data[model.data["feature_name"] == f].shape[0] == 0:
                continue
            if f in skip_features:
                continue
            fault_id = f
            overprints = []
            try:
                overprint_id = m2l_data["fault_fault"][
                    m2l_data["fault_fault"][fault_id] ==
                    1]["fault_id"].to_numpy()
                for i in overprint_id:
                    overprints.append(i)
                logger.info("Adding fault overprints {}".format(f))
            except:
                logger.info("No entry for %s in fault_fault_relations" % f)
            #     continue
            fault_center = m2l_data["stratigraphic_column"]["faults"][f][
                "FaultCenter"]
            fault_influence = m2l_data["stratigraphic_column"]["faults"][f][
                "InfluenceDistance"]
            fault_extent = m2l_data["stratigraphic_column"]["faults"][f][
                "HorizontalRadius"]
            fault_vertical_radius = m2l_data["stratigraphic_column"]["faults"][
                f]["VerticalRadius"]
            fault_slip_vector = m2l_data["stratigraphic_column"]["faults"][f][
                "FaultSlip"]
            faults.append(
                model.create_and_add_fault(
                    f,
                    -m2l_data["max_displacement"][f],
                    faultfunction="BaseFault",
                    fault_slip_vector=fault_slip_vector,
                    fault_center=fault_center,
                    fault_extent=fault_extent,
                    fault_influence=fault_influence,
                    fault_vectical_radius=fault_vertical_radius,
                    # overprints=overprints,
                    **fault_params,
                ))
    # for f in m2l_data['fault_intersection_angles']:
    #     if f in m2l_data['max_displacement'].keys():
    #         f1_norm = m2l_data['stratigraphic_column']['faults'][f]['FaultNorm']
    #         for intersection in m2l_data['fault_intersection_angles'][f]:
    #             if intersection[0] in m2l_data['max_displacement'].keys():
    #                 f2_norm = m2l_data['stratigraphic_column']['faults'][intersection[0]]['FaultNorm']
    #                 if intersection[2] < 30 and np.dot(f1_norm,f2_norm)>0:
    #                     logger.info('Adding splay {} to {}'.format(intersection[0],f))
    #                     if model[f] is None:
    #                         logger.error('Fault {} does not exist, cannot be added as splay')
    #                     elif model[intersection[0]] is None:
    #                         logger.error('Fault {} does not exist')
    #                     else:
    #                         model[intersection[0]].builder.add_splay(model[f])

    #                 else:
    #                     logger.info('Adding abut {} to {}'.format(intersection[0],f))
    #                     model[intersection[0]].add_abutting_fault(model[f])
    faults = m2l_data.get("fault_graph", None)
    if faults:
        for f in faults.nodes:
            f1_norm = m2l_data["stratigraphic_column"]["faults"][f][
                "FaultNorm"]
            for e in faults.edges(f):
                data = faults.get_edge_data(*e)
                f2_norm = m2l_data["stratigraphic_column"]["faults"][
                    e[1]]["FaultNorm"]

                if float(data["angle"]) < 30 and np.dot(f1_norm, f2_norm) > 0:
                    if model[f] is None or model[e[1]] is None:
                        logger.error(
                            "Fault {} does not exist, cannot be added as splay"
                        )
                    elif model[e[1]] is None:
                        logger.error("Fault {} does not exist")
                    else:
                        region = model[e[1]].builder.add_splay(model[f])
                        model[e[1]].splay[model[f].name] = region
                else:
                    if model[f] is None or model[e[1]] is None:
                        continue

                    logger.info("Adding abut {} to {}".format(e[1], f))
                    model[e[1]].add_abutting_fault(model[f])
    ## loop through all of the groups and add them to the model in youngest to oldest.
    group_features = []
    for i in np.sort(m2l_data["groups"]["group number"].unique()):
        g = (m2l_data["groups"].loc[m2l_data["groups"]["group number"] == i,
                                    "group"].unique()[0])
        group_features.append(
            model.create_and_add_foliation(g, **foliation_params))
        # if the group was successfully added (not null) then lets add the base (0 to be unconformity)
        if group_features[-1] and unconformities:
            model.add_unconformity(group_features[-1], 0)
    model.set_stratigraphic_column(m2l_data["stratigraphic_column"])
    if evaluate:
        model.update(verbose=True)
    return model
示例#9
0
from LoopStructural import log_to_file
import pandas as pd
import numpy as np

##################################################################################################
# Specify a log file
# ~~~~~~~~~~~~~~~~~~~~

log_to_file('logging_demo_log.log')

##################################################################################################
# Create model
# ~~~~~~~~~~~~~~~~~~~~
data, bb = load_claudius()
model = GeologicalModel(bb[0,:],bb[1,:])
model.set_model_data(data)

vals = [0,60,250,330,600]
strat_column = {'strati':{}}
for i in range(len(vals)-1):
    strat_column['strati']['unit_{}'.format(i)] = {'min':vals[i],'max':vals[i+1],'id':i}
model.set_stratigraphic_column(strat_column)
strati = model.create_and_add_foliation("strati",
                                           interpolatortype="FDI", # try changing this to 'PLI'
                                           nelements=1e4, # try changing between 1e3 and 5e4
                                           buffer=0.3,
                                           solver='pyamg',
                                           damp=True
                                          )
viewer = LavaVuModelViewer(model,background="white")
viewer.add_model_surfaces()
示例#10
0
def loop2LoopStructural(thickness_file,orientation_file,contacts_file,bbox):
    from LoopStructural import GeologicalModel
    from LoopStructural.visualisation import LavaVuModelViewer
    import lavavu



    df = pd.read_csv(thickness_file)
    
    thickness = {}
    for f in df['formation'].unique():
        thickness[f] = np.mean(df[df['formation']==f]['thickness'])

    #display(thickness)
    order = ['P__TKa_xs_k','P__TKo_stq','P__TKk_sf','P__TK_s',
    'A_HAu_xsl_ci', 'A_HAd_kd', 'A_HAm_cib', 'A_FOj_xs_b',
    'A_FO_xo_a', 'A_FO_od', 'A_FOu_bbo',
    'A_FOp_bs', 'A_FOo_bbo', 'A_FOh_xs_f', 'A_FOr_b']
    
    strat_val = {}
    val = 0
    for o in order:
        if o in thickness:
            strat_val[o] = val
            val+=thickness[o]

    #display(strat_val)    
    
    orientations = pd.read_csv(orientation_file)
    contacts = pd.read_csv(contacts_file) 
    
    contacts['val'] = np.nan 

    for o in strat_val:
        contacts.loc[contacts['formation']==o,'val'] = strat_val[o]
    data = pd.concat([orientations,contacts],sort=False)
    data['type'] = np.nan
    for o in order:
        data.loc[data['formation']==o,'type'] = 's0'
    data     
    
    boundary_points = np.zeros((2,3))
    boundary_points[0,0] = bbox[0] 
    boundary_points[0,1] = bbox[1] 
    boundary_points[0,2] = -20000 
    boundary_points[1,0] = bbox[2] 
    boundary_points[1,1] = bbox[3] 
    boundary_points[1,2] = 1200
    
    model = GeologicalModel(boundary_points[0,:],boundary_points[1,:])
    model.set_model_data(data)
    strati = model.create_and_add_foliation('s0', #identifier in data frame
                                                        interpolatortype="FDI", #which interpolator to use
                                                        nelements=400000, # how many tetras/voxels
                                                        buffer=0.1, # how much to extend nterpolation around box
                                                        solver='external',
                                                        external=solve_pyamg
                                                       )   
    #viewer = LavaVuModelViewer()
    viewer = LavaVuModelViewer(model)
    viewer.add_data(strati['feature'])
    viewer.add_isosurface(strati['feature'],
    #                       nslices=10,
                          slices= strat_val.values(),
    #                     voxet={'bounding_box':boundary_points,'nsteps':(100,100,50)},
                          paint_with=strati['feature'],
                          cmap='tab20'

                         )
    #viewer.add_scalar_field(model.bounding_box,(100,100,100),
   #                           'scalar',
    ##                             norm=True,
    #                         paint_with=strati['feature'],
    #                         cmap='tab20')
    viewer.add_scalar_field(strati['feature'])
    viewer.set_viewer_rotation([-53.8190803527832, -17.1993350982666, -2.1576387882232666])
    #viewer.save("fdi_surfaces.png")
    viewer.interactive()
# Testing data density
# ~~~~~~~~~~~~~~~~~~~~
# 
# -  Use the toggle bar to change the amount of data used by the
#    interpolation algorithm.
# -  How does the shape of the fold change as we remove data points?
# -  Now what happens if we only consider data from the map view?
# 
# **HINT** you can view the strike and dip data by unchecking the scalar
# field box.
# 
# **The black arrows are the normal vector to the folded surface**
# 
npoints = 20
model = GeologicalModel(boundary_points[0,:],boundary_points[1,:])
model.set_model_data(data[:npoints])
stratigraphy = model.create_and_add_foliation("s0",interpolatortype="PLI",nelements=5000,buffer=0.3,cgw=0.1)#.2)
viewer = LavaVuModelViewer(model,background="white")
# viewer.add_scalar_field(model.bounding_box,(38,55,30),
#                       'box',
#                      paint_with=stratigraphy,
#                      cmap='prism')
viewer.add_data(stratigraphy)
viewer.add_isosurface(stratigraphy,
                      )
viewer.rotate([-85.18760681152344, 42.93233871459961, 0.8641873002052307])
viewer.display()


######################################################################
# Modelling folds using structural geology
示例#12
0
def build_model(m2l_data,
                skip_faults=False,
                unconformities=False,
                fault_params=None,
                foliation_params=None,
                rescale=True,
                **kwargs):
    """[summary]

    [extended_summary]

    Parameters
    ----------
    m2l_data : dict
        [description]
    skip_faults : bool, optional
        [description], by default False
    fault_params : dict, optional
        [description], by default None
    foliation_params : dict, optional
        [description], by default None

    Returns
    -------
    [type]
        [description]
    """
    from LoopStructural import GeologicalModel

    boundary_points = np.zeros((2, 3))
    boundary_points[0, 0] = m2l_data['bounding_box']['minx']
    boundary_points[0, 1] = m2l_data['bounding_box']['miny']
    boundary_points[0, 2] = m2l_data['bounding_box']['lower']
    boundary_points[1, 0] = m2l_data['bounding_box']['maxx']
    boundary_points[1, 1] = m2l_data['bounding_box']['maxy']
    boundary_points[1, 2] = m2l_data['bounding_box']['upper']

    model = GeologicalModel(boundary_points[0, :],
                            boundary_points[1, :],
                            rescale=rescale)
    # m2l_data['data']['val'] /= model.scale_factor
    model.set_model_data(m2l_data['data'])
    if not skip_faults:
        faults = []
        for f in m2l_data['max_displacement'].keys():
            if model.data[model.data['feature_name'] == f].shape[0] == 0:
                continue
            fault_id = f
            overprints = []
            try:
                overprint_id = m2l_data['fault_fault'][
                    m2l_data['fault_fault'][fault_id] ==
                    1]['fault_id'].to_numpy()
                for i in overprint_id:
                    overprints.append(i)
                logger.info('Adding fault overprints {}'.format(f))
            except:
                logger.info('No entry for %s in fault_fault_relations' % f)
        #     continue
            faults.append(
                model.create_and_add_fault(
                    f,
                    -m2l_data['max_displacement'][f],
                    faultfunction='BaseFault',
                    overprints=overprints,
                    **fault_params,
                ))

    ## loop through all of the groups and add them to the model in youngest to oldest.
    group_features = []
    for i in np.sort(m2l_data['groups']['group number'].unique()):
        g = m2l_data['groups'].loc[m2l_data['groups']['group number'] == i,
                                   'group'].unique()[0]
        group_features.append(
            model.create_and_add_foliation(g, **foliation_params))
        # if the group was successfully added (not null) then lets add the base (0 to be unconformity)
        if group_features[-1] and unconformities:
            model.add_unconformity(group_features[-1], 0)
    model.set_stratigraphic_column(m2l_data['stratigraphic_column'])
    return model
示例#13
0
import glob
import numpy as np
import logging
logging.getLogger().setLevel(logging.INFO)

data, bb = load_claudius()#claudius.get_data()
bb[1,0]+=200
bb[0,0]-=200
bb[1,1]+=200
bb[0,1]-=200
bb[1,2]+=200
bb[0,2]-=200

model = GeologicalModel(bb[0,:],bb[1,:])
data['random'] = np.random.random(data.shape[0])
model.set_model_data(data[data['random'] < 0.01])#[np.isnan(data['val'])])
strati = model.create_and_add_foliation("strati",
                                           interpolatortype="surfe",
                                        method='single_surface'
                                        )
print(strati.evaluate_value(model.regular_grid((10,10,10))))
viewer = LavaVuModelViewer(model,background="white")

# determine the number of unique surfaces in the model from
# the input data and then calculate isosurfaces for this
unique = np.unique(strati.interpolator.get_value_constraints()[:,3])
viewer.add_isosurface(model.features[0],
                       slices=unique,
                       cmap='prism',
                      paint_with=model.features[0])
#
示例#14
0
def test_add_data():
    data, bb = load_claudius()
    model = GeologicalModel(bb[0, :], bb[1, :])
    model.set_model_data(data)