示例#1
0
    def __init__(self, parentChromosomes) -> None:
        """
        """

        self.parentChromosomes = parentChromosomes
        self.offsprings = {0: Chromosome(), 1: Chromosome()}

        self.offspringsItemsToOrder = {0: set(), 1: set()}
        self.offspringsItemsToOrder[0] = {
            (item, position)
            for item, itemDemands in enumerate(
                InputDataInstance.instance.demandsArrayZipped)
            for position in range(len(itemDemands))
        }
        nZeros = InputDataInstance.instance.nPeriods - InputDataInstance.instance.demandsArray.sum(
        )
        # print("nZeros : ", nZeros)
        self.offspringsItemsToOrder[0] = self.offspringsItemsToOrder[0].union({
            (-1, i)
            for i in range(nZeros)
        })
        self.offspringsItemsToOrder[1] = copy.deepcopy(
            self.offspringsItemsToOrder[0])

        self.primeParent = self.parentChromosomes[0] if self.parentChromosomes[
            0] < self.parentChromosomes[1] else self.parentChromosomes[1]

        self._stopSearchEvents = {0: threading.Event(), 1: threading.Event()}
示例#2
0
    def test_evaluateDnaArray(self):
        """
        """

        self.setUpInput()

        chromosome = Chromosome.createFromIdentifier(
            stringIdentifier=(10, 0, 0, 0, 9, 8, 7, 6, 5, 4, 4, 2, 1, 1, 3))
        print(Chromosome.evaluateDnaArray(chromosome.dnaArray))

        assert 0
示例#3
0
    def process(self, chromosome, strategy="simple_mutation"):
        """Process the given chromosome in order to return a mutated version
        strategy: random_mutation|absolute_mutation|simple_mutation
        """

        print("mutatiooon", strategy, chromosome, chromosome.dnaArray)

        self._visitedNodes = defaultdict(lambda: None)

        self.searchIndividu(chromosome, strategy)

        # print("cro : ", chromosome.genesByPeriod)
        print("Mutation results : ", strategy, chromosome, self.result)

        c = Chromosome.createFromIdentifier(self.result.stringIdentifier)
        if c.dnaArray != self.result.dnaArray or c.cost != self.result.cost or c.genesByPeriod != self.result.genesByPeriod:
            print("Mutation error : ", self.result, self.result.dnaArray)

        # if strategy != "population":
        #     if self.result.dnaArray != Chromosome.createFromIdentifier(self.result.stringIdentifier).dnaArray:
        #         print("Oaaaaaaaaaaaaaaaaauuuuuuuuuuuuuuuuuuuuuuuuuhhhhhhhhhhhhhhh")
        #         print(self.result.dnaArray, "\n", Chromosome.createFromIdentifier(self.result.stringIdentifier).dnaArray)

        #     print("cro ***** : ", self.result.genesByPeriod)
        return (self.result if self.result is not None else chromosome)
示例#4
0
    def test_crossover(self):
        """
        """

        self.setUpInput()

        # cA, cB = Chromosome.createFromIdentifier(stringIdentifier=(2, 1, 1, 2, 0)), Chromosome.createFromIdentifier(stringIdentifier=(2, 1, 0, 1, 2))
        cA, cB = Chromosome.createFromIdentifier(
            stringIdentifier=(0, 1, 2, 2, 2, 3, 1,
                              0)), Chromosome.createFromIdentifier(
                                  stringIdentifier=(0, 0, 2, 2, 2, 1, 3, 1))
        # cA, cB = Chromosome.createFromIdentifier(stringIdentifier=(0, 0, 0, 6, 1, 8, 7, 10, 5, 4, 4, 2, 9, 3, 1)), Chromosome.createFromIdentifier(stringIdentifier=(0, 4, 0, 5, 10, 0, 8, 2, 6, 4, 3, 1, 1, 7, 9))
        # [(5, 6, 10, 8, 0, 0, 9, 7, 0, 4, 4, 2, 1, 1, 3) : 1811, (7, 2, 8, 5, 10, 9, 0, 0, 0, 4, 4, 6, 1, 1, 3) : 1857]

        print(cA, "\n", cB, "\n -----------------------------")
        print((CrossOverOperator([cA, cB])).process())

        assert 0
示例#5
0
    def test_mutation(self):
        """
        """

        self.setUpInput()

        # c = Chromosome.createFromIdentifier(stringIdentifier=(2, 1, 0, 1, 2))
        # c = Chromosome.createFromIdentifier(stringIdentifier=(0, 2, 2, 2, 3, 1, 0, 1))
        c = Chromosome.createFromIdentifier(stringIdentifier=(3, 2, 2, 2, 0, 1,
                                                              1, 0))
        # c = Chromosome.createFromIdentifier(stringIdentifier=(0, 0, 0, 2, 4, 4, 8, 7, 5, 3, 1, 1, 6, 10, 9))
        print("Chromosome ", c)
        # # [2, 1, 2, 0, 1]
        LspRuntimeMonitor.mutation_strategy = "random_mutation"
        result = (MutationOperator()).processInstance(c)
        print("1 -- ", result,
              (Chromosome.createFromIdentifier(result.stringIdentifier)))

        assert 0
示例#6
0
    def test_localSearch(self):
        """
        """

        self.setUpInput()

        # c = Chromosome.createFromIdentifier(stringIdentifier=(0, 0, 0, 2, 4, 4, 8, 7, 5, 3, 1, 1, 6, 10, 9))
        c = Chromosome.createFromIdentifier(stringIdentifier=(0, 0, 2, 2, 2, 1,
                                                              3, 1))
        # (0, 0, 0, 9, 10, 8, 7, 5, 6, 4, 4, 2, 1, 1, 3)
        print("Input : ", c)
        print("Output : ", (LocalSearchEngine()).process(c, "simple_mutation"))

        assert 0
示例#7
0
    def test_localSearchPopulation(self):
        """
        """

        self.setUpInput()

        # c = Chromosome.createFromRawDNA([2, 1, 0, 2, 1])
        c, population = Chromosome.createFromRawDNA([1, 2, 2, 2, 1, 3, 0,
                                                     0]), Population([])
        # c, population = Chromosome.createFromIdentifier("36735108634444444144410748754494456471077677765131062777310822666693622666691810555996653211088261109661061512333111010101010910182821010810251292222552188881538111111913393555990000000000000000000000000000000000000000] : 82009, [36753108634444444144410748754494456471077677765131062777310822666693622666691810555996653211088261109661061512333111010101010910182821010810251292222552188881538111111913393555990000000000000000000000000000000000000000"), Population([])
        # [36735108634444444144410748754494456471077677765131062777310822666693622666691810555996653211088261109661061512333111010101010910182821010810251292222552188881538111111913393555990000000000000000000000000000000000000000] : 82009, [36753108634444444144410748754494456471077677765131062777310822666693622666691810555996653211088261109661061512333111010101010910182821010810251292222552188881538111111913393555990000000000000000000000000000000000000000]
        print(c)
        (LocalSearchEngine()).populate(c, [0, population])
        print(population)

        assert 0
示例#8
0
    def areItemsSwitchable(self, chromosome, periodGene, altPeriod,
                           periodGeneLowerLimit, periodGeneUpperLimit):
        """
        """

        if chromosome.stringIdentifier[altPeriod] > 0:
            altPeriodGene = chromosome.genesByPeriod[altPeriod]
            altPeriodGeneLowerLimit, altPeriodGeneUpperLimit = Chromosome.geneLowerUpperLimit(
                chromosome, altPeriodGene)

            if (periodGeneLowerLimit <= altPeriod
                    and altPeriod < periodGeneUpperLimit) and (
                        altPeriodGeneLowerLimit <= periodGene.period
                        and periodGene.period < altPeriodGeneUpperLimit):
                return True
        else:
            if (periodGeneLowerLimit <= altPeriod
                    and altPeriod < periodGeneUpperLimit):
                return True

        return False
示例#9
0
    def searchIndividu(self, chromosome, strategy):
        """
        """

        results = []

        if strategy == "absolute_mutation":
            if self._visitedNodes[chromosome.stringIdentifier] is not None:
                return None
            print("chrom : ", chromosome, self.searchDepth)

        # shuffledPeriods = [(period, item) for period, item in enumerate(chromosome.stringIdentifier)]

        # print("shuffledPeriods : ", shuffledPeriods, chromosome.stringIdentifier)
        # random.shuffle(shuffledPeriods)

        orderedGenes = [
            gene for itemGenes in chromosome.dnaArray for gene in itemGenes
            if gene.cost > 0
        ]
        # orderedGenes.sort(key=lambda gene: gene.cost, reverse= True)

        random.shuffle(orderedGenes)

        # print("ordered : ", orderedGenes)
        for periodGene in orderedGenes:

            print("gene : ", periodGene)
            periodGeneLowerLimit, periodGeneUpperLimit = Chromosome.geneLowerUpperLimit(
                chromosome, periodGene)

            i = 1
            backwardPeriod, forwardPeriod = periodGene.period, periodGene.period
            while True:
                if forwardPeriod is not None:
                    forwardPeriod = periodGene.period + i
                if backwardPeriod is not None:
                    backwardPeriod = periodGene.period - i

                if backwardPeriod is not None and backwardPeriod < 0:
                    backwardPeriod = None

                if forwardPeriod is not None and forwardPeriod > InputDataInstance.instance.nPeriods - 1:
                    forwardPeriod = None

                # print(backwardPeriod, forwardPeriod)
                if backwardPeriod is not None:
                    if self.areItemsSwitchable(chromosome, periodGene,
                                               backwardPeriod,
                                               periodGeneLowerLimit,
                                               periodGeneUpperLimit):
                        evaluationData = self.evaluateItemsSwitch(
                            chromosome, periodGene, backwardPeriod)
                        if strategy == "random_mutation":
                            self.result = self.switchItems(
                                chromosome, periodGene, backwardPeriod,
                                evaluationData)
                            return None

                        if strategy == "population":
                            results.append(
                                self.switchItems(chromosome, periodGene,
                                                 backwardPeriod,
                                                 evaluationData))

                        if strategy == "positive_mutation":
                            if evaluationData["variance"] > 0:
                                self.result = self.switchItems(
                                    chromosome, periodGene, backwardPeriod,
                                    evaluationData)
                                return None

                        if strategy == "simple_mutation":
                            if evaluationData["variance"] > 0:
                                self.result = self.switchItems(
                                    chromosome, periodGene, backwardPeriod,
                                    evaluationData)
                                return None
                            results.append(evaluationData)

                        if strategy == "absolute_mutation":
                            if evaluationData["variance"] > 0:
                                results.append(evaluationData)
                    else:
                        backwardPeriod = None

                if forwardPeriod is not None:
                    if self.areItemsSwitchable(chromosome, periodGene,
                                               forwardPeriod,
                                               periodGeneLowerLimit,
                                               periodGeneUpperLimit):
                        evaluationData = self.evaluateItemsSwitch(
                            chromosome, periodGene, forwardPeriod)
                        if strategy == "random_mutation":
                            self.result = self.switchItems(
                                chromosome, periodGene, forwardPeriod,
                                evaluationData)
                            return None

                        if strategy == "population":
                            results.append(
                                self.switchItems(chromosome, periodGene,
                                                 forwardPeriod,
                                                 evaluationData))

                        if strategy == "positive_mutation":
                            if evaluationData["variance"] > 0:
                                self.result = self.switchItems(
                                    chromosome, periodGene, forwardPeriod,
                                    evaluationData)
                                return None

                        if strategy == "simple_mutation":
                            if evaluationData["variance"] > 0:
                                self.result = self.switchItems(
                                    chromosome, periodGene, forwardPeriod,
                                    evaluationData)
                                return None
                            results.append(evaluationData)

                        if strategy == "absolute_mutation":
                            if evaluationData["variance"] > 0:
                                results.append(evaluationData)
                    else:
                        forwardPeriod = None

                if backwardPeriod is None and forwardPeriod is None:
                    break

                i += 1

                if strategy == "absolute_mutation":
                    if len(results) > 0:
                        self.searchDepth += 1
                        self._visitedNodes[chromosome.stringIdentifier] = 1
                        self.searchIndividu(results[-1], strategy)

                        if self._stopSearchEvent.is_set():
                            return None

        if strategy == "absolute_mutation":
            if len(results) == 0:
                self.result = chromosome
                self._stopSearchEvent.set()
                return None
        elif strategy == "simple_mutation":
            # self.result = np.random.choice(results)
            return None
        elif strategy == "population":
            self.result = results
            return None
示例#10
0
    def evaluateItemsSwitch(self, chromosome, periodGene, altPeriod):
        """
        """

        print("Evaluating : ", chromosome, periodGene.period, altPeriod)

        evaluationData = {"variance": periodGene.cost, "periodGene": {}}
        if chromosome.stringIdentifier[altPeriod] > 0:
            altPeriodGene = chromosome.genesByPeriod[altPeriod]
            evaluationData["variance"] += altPeriodGene.cost

            nextPeriodGene = None if periodGene.nextGene is None else chromosome.dnaArray[
                periodGene.nextGene[0]][periodGene.nextGene[1]]
            nextAltPeriodGene = None if altPeriodGene.nextGene is None else chromosome.dnaArray[
                altPeriodGene.nextGene[0]][altPeriodGene.nextGene[1]]

            prevPeriodGene = None if periodGene.prevGene is None else chromosome.dnaArray[
                periodGene.prevGene[0]][periodGene.prevGene[1]]
            prevAltPeriodGene = None if altPeriodGene.prevGene is None else chromosome.dnaArray[
                altPeriodGene.prevGene[0]][altPeriodGene.prevGene[1]]

            if nextPeriodGene == altPeriodGene:
                if nextAltPeriodGene is not None:
                    evaluationData[
                        "variance"] += nextAltPeriodGene.changeOverCost - InputDataInstance.instance.changeOverCostsArray[
                            periodGene.item][nextAltPeriodGene.item]

                evaluationData["altPeriodGene"] = {
                    "changeOverCost":
                    (0 if prevPeriodGene is None else
                     InputDataInstance.instance.changeOverCostsArray[
                         prevPeriodGene.item][altPeriodGene.item])
                }
                evaluationData["periodGene"][
                    "changeOverCost"] = InputDataInstance.instance.changeOverCostsArray[
                        altPeriodGene.item][periodGene.item]

                evaluationData["periodGene"]["prevGene"] = altPeriodGene
                evaluationData["periodGene"]["nextGene"] = nextAltPeriodGene
                evaluationData["altPeriodGene"]["prevGene"] = prevPeriodGene
                evaluationData["altPeriodGene"]["nextGene"] = periodGene

            elif nextAltPeriodGene == periodGene:
                if nextPeriodGene is not None:
                    print(
                        "compris --- : ", nextPeriodGene.changeOverCost,
                        InputDataInstance.instance.changeOverCostsArray[
                            altPeriodGene.item][nextPeriodGene.item])
                    evaluationData[
                        "variance"] += nextPeriodGene.changeOverCost - InputDataInstance.instance.changeOverCostsArray[
                            altPeriodGene.item][nextPeriodGene.item]

                evaluationData["periodGene"]["changeOverCost"] = (
                    0 if prevAltPeriodGene is None else
                    InputDataInstance.instance.changeOverCostsArray[
                        prevAltPeriodGene.item][periodGene.item])
                evaluationData["altPeriodGene"] = {
                    "changeOverCost":
                    InputDataInstance.instance.changeOverCostsArray[
                        periodGene.item][altPeriodGene.item]
                }

                evaluationData["periodGene"]["prevGene"] = prevAltPeriodGene
                evaluationData["periodGene"]["nextGene"] = altPeriodGene
                evaluationData["altPeriodGene"]["prevGene"] = periodGene
                evaluationData["altPeriodGene"]["nextGene"] = nextPeriodGene

            else:
                if nextAltPeriodGene is not None:
                    evaluationData[
                        "variance"] += nextAltPeriodGene.changeOverCost - InputDataInstance.instance.changeOverCostsArray[
                            periodGene.item][nextAltPeriodGene.item]

                if nextPeriodGene is not None:
                    evaluationData[
                        "variance"] += nextPeriodGene.changeOverCost - InputDataInstance.instance.changeOverCostsArray[
                            altPeriodGene.item][nextPeriodGene.item]

                evaluationData["periodGene"]["changeOverCost"] = (
                    0 if prevAltPeriodGene is None else
                    InputDataInstance.instance.changeOverCostsArray[
                        prevAltPeriodGene.item][periodGene.item])
                evaluationData["altPeriodGene"] = {
                    "changeOverCost":
                    (0 if prevPeriodGene is None else
                     InputDataInstance.instance.changeOverCostsArray[
                         prevPeriodGene.item][altPeriodGene.item])
                }

                evaluationData["periodGene"]["prevGene"] = prevAltPeriodGene
                evaluationData["periodGene"]["nextGene"] = nextAltPeriodGene
                evaluationData["altPeriodGene"]["prevGene"] = prevPeriodGene
                evaluationData["altPeriodGene"]["nextGene"] = nextPeriodGene

            evaluationData["altPeriodGene"][
                "stockingCost"] = InputDataInstance.instance.stockingCostsArray[
                    altPeriodGene.item] * (
                        InputDataInstance.instance.demandsArrayZipped[
                            altPeriodGene.item][altPeriodGene.position] -
                        periodGene.period)
            evaluationData["periodGene"][
                "stockingCost"] = InputDataInstance.instance.stockingCostsArray[
                    periodGene.item] * (
                        InputDataInstance.instance.demandsArrayZipped[
                            periodGene.item][periodGene.position] - altPeriod)

            # print("compris --- : ", evaluationData["variance"], periodGene.stockingCost, periodGene.changeOverCost)
            evaluationData["variance"] -= (
                evaluationData["altPeriodGene"]["stockingCost"] +
                evaluationData["altPeriodGene"]["changeOverCost"])

        else:
            prevGene0 = Chromosome.prevProdGene(altPeriod, chromosome.dnaArray,
                                                chromosome.stringIdentifier)
            nextGene0 = Chromosome.nextProdGene(altPeriod, chromosome.dnaArray,
                                                chromosome.stringIdentifier)

            if nextGene0 != periodGene and prevGene0 != periodGene:
                # prevPeriodGene = None if periodGene.prevGene is None else chromosome.dnaArray[periodGene.prevGene[0]][periodGene.prevGene[1]]
                nextPeriodGene = None if periodGene.nextGene is None else chromosome.dnaArray[
                    periodGene.nextGene[0]][periodGene.nextGene[1]]
                if nextPeriodGene is not None:
                    evaluationData[
                        "variance"] += nextPeriodGene.changeOverCost - (
                            0 if periodGene.prevGene is None else
                            InputDataInstance.instance.changeOverCostsArray[
                                periodGene.prevGene[0]][nextPeriodGene.item])

                if nextGene0 is not None:
                    evaluationData[
                        "variance"] += nextGene0.changeOverCost - InputDataInstance.instance.changeOverCostsArray[
                            periodGene.item][nextGene0.item]

                evaluationData["periodGene"]["prevGene"] = prevGene0
                evaluationData["periodGene"]["nextGene"] = nextGene0

            # else:
            #     pass

            evaluationData["periodGene"][
                "stockingCost"] = InputDataInstance.instance.stockingCostsArray[
                    periodGene.item] * (
                        InputDataInstance.instance.demandsArrayZipped[
                            periodGene.item][periodGene.position] - altPeriod)
            evaluationData["periodGene"]["changeOverCost"] = (
                0 if prevGene0 is None else InputDataInstance.instance.
                changeOverCostsArray[prevGene0.item][periodGene.item])

        # print("pop : ", evaluationData["periodGene"]["stockingCost"])
        evaluationData["variance"] -= ( \
            evaluationData["periodGene"]["stockingCost"] \
            + evaluationData["periodGene"]["changeOverCost"]
        )

        print("Evaluation result : ", chromosome, periodGene.period, altPeriod,
              " ---> ", evaluationData)

        return evaluationData
示例#11
0
    def switchItems(self, chromosome, periodGene, altPeriod, evaluationData):
        """
        """

        mutation = Chromosome()
        mutation.stringIdentifier = self.mutationStringIdentifier(
            chromosome.stringIdentifier, periodGene, altPeriod)
        mutation.dnaArray = copy.deepcopy(chromosome.dnaArray)
        mutation.genesByPeriod = copy.deepcopy(chromosome.genesByPeriod)
        mutation.cost = chromosome.cost - evaluationData["variance"]

        period = (
            mutation.dnaArray[periodGene.item][periodGene.position]).period
        (mutation.dnaArray[periodGene.item][periodGene.position]
         ).period = altPeriod
        (mutation.dnaArray[periodGene.item][periodGene.position]
         ).changeOverCost = evaluationData["periodGene"]["changeOverCost"]
        (mutation.dnaArray[periodGene.item][periodGene.position]
         ).stockingCost = evaluationData["periodGene"]["stockingCost"]
        if "prevGene" in evaluationData["periodGene"]:
            (mutation.dnaArray[periodGene.item][periodGene.position]
             ).prevGene = None if evaluationData["periodGene"][
                 "prevGene"] is None else (
                     (evaluationData["periodGene"]["prevGene"]).item,
                     (evaluationData["periodGene"]["prevGene"]).position)
        if "nextGene" in evaluationData["periodGene"]:
            (mutation.dnaArray[periodGene.item][periodGene.position]
             ).nextGene = None if evaluationData["periodGene"][
                 "nextGene"] is None else (
                     (evaluationData["periodGene"]["nextGene"]).item,
                     (evaluationData["periodGene"]["nextGene"]).position)
        (mutation.dnaArray[periodGene.item][periodGene.position]
         ).cost = evaluationData["periodGene"][
             "stockingCost"] + evaluationData["periodGene"]["changeOverCost"]

        if chromosome.stringIdentifier[altPeriod] == 0:
            # genesByPeriod
            del mutation.genesByPeriod[periodGene.period]
            mutation.genesByPeriod[altPeriod] = mutation.dnaArray[
                periodGene.item][periodGene.position]

        else:
            altPeriodGene = chromosome.genesByPeriod[altPeriod]

            # genesByPeriod
            mutation.genesByPeriod[periodGene.period] = mutation.dnaArray[
                altPeriodGene.item][altPeriodGene.position]
            mutation.genesByPeriod[altPeriod] = mutation.dnaArray[
                periodGene.item][periodGene.position]

            print("printo : ", period)
            (mutation.dnaArray[altPeriodGene.item][altPeriodGene.position]
             ).period = period
            (mutation.dnaArray[altPeriodGene.item][altPeriodGene.position]
             ).changeOverCost = evaluationData["altPeriodGene"][
                 "changeOverCost"]
            (mutation.dnaArray[altPeriodGene.item][altPeriodGene.position]
             ).stockingCost = evaluationData["altPeriodGene"]["stockingCost"]
            if "prevGene" in evaluationData["altPeriodGene"]:
                (mutation.dnaArray[altPeriodGene.item][altPeriodGene.position]
                 ).prevGene = None if evaluationData["altPeriodGene"][
                     "prevGene"] is None else (
                         (evaluationData["altPeriodGene"]["prevGene"]).item,
                         (evaluationData["altPeriodGene"]["prevGene"]
                          ).position)
            if "nextGene" in evaluationData["altPeriodGene"]:
                (mutation.dnaArray[altPeriodGene.item][altPeriodGene.position]
                 ).nextGene = None if evaluationData["altPeriodGene"][
                     "nextGene"] is None else (
                         (evaluationData["altPeriodGene"]["nextGene"]).item,
                         (evaluationData["altPeriodGene"]["nextGene"]
                          ).position)
            (mutation.dnaArray[altPeriodGene.item][altPeriodGene.position]
             ).cost = evaluationData["altPeriodGene"][
                 "stockingCost"] + evaluationData["altPeriodGene"][
                     "changeOverCost"]

            if altPeriodGene.prevGene is not None:
                (mutation.dnaArray[altPeriodGene.prevGene[0]]
                 [altPeriodGene.prevGene[1]]).nextGene = (periodGene.item,
                                                          periodGene.position)
            if periodGene.nextGene is not None:
                (mutation.dnaArray[periodGene.nextGene[0]]
                 [periodGene.nextGene[1]]).prevGene = (altPeriodGene.item,
                                                       altPeriodGene.position)

        return mutation
示例#12
0
    def process(self, offspring_result=2):
        """
        """

        if offspring_result not in [1, 2]:
            # TODO: throw an error
            return None, None

        if self.parentChromosomes[0] == self.parentChromosomes[1]:
            return self.parentChromosomes[0], self.parentChromosomes[1]

        # print("Crossover : ", self.parentChromosomes, self.parentChromosomes[0].dnaArray, self.parentChromosomes[1].dnaArray)
        print("Crossover : ", self.parentChromosomes)

        # before launching the recursive search
        gapLength = int(InputDataInstance.instance.nPeriods / 3)
        # random.seed()
        self.crossOverPeriod = random.randint(
            gapLength + 1,
            InputDataInstance.instance.nPeriods - (gapLength + 1))

        # checking the crossover memory for previous occurences of this context
        # memoryResult1 = CrossOverNode.crossOverMemory["db"][((self.parentChromosomes[0]).stringIdentifier, (self.parentChromosomes[1]).stringIdentifier, crossOverPeriod)]
        # if  memoryResult1 is not None:
        #     return memoryResult1

        # memoryResult2 = CrossOverNode.crossOverMemory["db"][((self.parentChromosomes[1]).stringIdentifier, (self.parentChromosomes[0]).stringIdentifier, crossOverPeriod)]
        # if memoryResult2 is not None:
        #     return memoryResult2

        # Initializing offsprings' stringIdentifier property

        # looping
        self.crossOverPeriod = 3
        print("crossOverPeriod : ", self.crossOverPeriod)
        self.offspringLastPlacedGene = {0: None, 1: None}

        self.offsprings[0].stringIdentifier = [
            "*"
        ] * InputDataInstance.instance.nPeriods
        self.offsprings[1].stringIdentifier = [
            "*"
        ] * InputDataInstance.instance.nPeriods

        self.setOffsprings()

        if self.offsprings[0] is not None:
            self.offsprings[0].stringIdentifier = tuple(
                self.offsprings[0].stringIdentifier)
            c = Chromosome.createFromIdentifier(
                self.offsprings[0].stringIdentifier)
            if self.offsprings[0].dnaArray != c.dnaArray:
                print(" Watch out 0", self.offsprings[0].dnaArray, " --- ",
                      c.dnaArray)
        else:
            print("Crossover offspring 0 None")
            # del self.offsprings[0]

        if self.offsprings[1] is not None:
            self.offsprings[1].stringIdentifier = tuple(
                self.offsprings[1].stringIdentifier)
            c = Chromosome.createFromIdentifier(
                self.offsprings[1].stringIdentifier)
            if self.offsprings[1].dnaArray != c.dnaArray:
                print(" Watch out 1", self.offsprings[1].dnaArray)
        else:
            print("Crossover offspring 1 None")
            # del self.offsprings[1]

        print("Cross Over result : ",
              [self.parentChromosomes, self.offsprings])

        # storing this result in the crossover memory before returning
        # with CrossOverNode.crossOverMemory["lock"]:
        #     CrossOverNode.crossOverMemory["db"][((self.parentChromosomes[0]).stringIdentifier, (self.parentChromosomes[1]).stringIdentifier, crossOverPeriod)] = tuple(self.offsprings.values())

        return tuple(self.offsprings.values())
示例#13
0
    def createMutatedChromosome(cls, chromosome, swap):
        """
        """

        # checking if this combination of chromosome swap has already been visited
        chromosome1, chromosome2, theChromosome = LocalSearchNode.mutationsMemory[
            "db"][(chromosome.stringIdentifier, swap[0],
                   swap[1])], LocalSearchNode.mutationsMemory["db"][(
                       chromosome.stringIdentifier, swap[1], swap[0])], None
        if chromosome1 is not None:
            theChromosome = chromosome1

        if chromosome2 is not None:
            theChromosome = chromosome2

        if theChromosome is not None:
            # print("SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWWWWWWWWWWWWWWWWWWWWWWWW")
            return theChromosome

        # Making up the stringIdentifier of the result chromosome
        stringIdentifier = list(chromosome.stringIdentifier)
        dnaArray = None

        gene1Item, gene1Position = swap[0][0], swap[0][1]
        # print("swap : ", swap, chromosome, chromosome.dnaArray, swap[1][0] == -1)
        if swap[1][0] == -1:
            newPeriod = swap[1][1]
            stringIdentifier[newPeriod] = gene1Item + 1
            stringIdentifier[(
                chromosome.dnaArray[gene1Item][gene1Position]).period] = 0
            stringIdentifier = tuple(stringIdentifier)
            if Chromosome.pool[stringIdentifier] is not None:
                with LocalSearchNode.mutationsMemory["lock"]:
                    LocalSearchNode.mutationsMemory["db"][(
                        stringIdentifier, swap[0],
                        swap[1])] = Chromosome.pool[stringIdentifier]
                return Chromosome.pool[stringIdentifier]

            dnaArray = copy.deepcopy(chromosome.dnaArray)
            gene1 = dnaArray[gene1Item][gene1Position]

            cost = chromosome.cost
            cost -= gene1.cost

            nextGene1, nextGene0 = Chromosome.nextProdGene(
                gene1.period, dnaArray,
                chromosome.stringIdentifier), Chromosome.nextProdGene(
                    newPeriod, dnaArray, chromosome.stringIdentifier)
            prevGene0 = Chromosome.prevProdGene(newPeriod, dnaArray,
                                                chromosome.stringIdentifier)
            condition1 = nextGene0 is not None and nextGene0 == gene1
            condition2 = prevGene0 is not None and prevGene0 == gene1

            if not (condition1 or condition2):

                # print("nextGene1, nextGene0 : ", nextGene1, nextGene0)
                cost -= nextGene1.changeOverCost if nextGene1 is not None else 0
                cost -= nextGene0.changeOverCost if nextGene0 is not None else 0

                if nextGene1 is not None:
                    # print("before nextGene1 : ", nextGene1, nextGene1.changeOverCost)
                    nextGene1.prevGene = gene1.prevGene
                    nextGene1.calculateChangeOverCost()
                    nextGene1.calculateCost()
                    # print("after nextGene1 : ", nextGene1, nextGene1.changeOverCost)
                    cost += nextGene1.changeOverCost

                if nextGene0 is not None:
                    # print("before nextGene0 : ", nextGene0, nextGene0.changeOverCost)
                    (dnaArray[gene1Item][gene1Position]
                     ).prevGene = nextGene0.prevGene

                    nextGene0.prevGene = (gene1.item, gene1.position)
                    nextGene0.calculateChangeOverCost()
                    nextGene0.calculateCost()
                    # print("after nextGene0 : ", nextGene0, nextGene0.changeOverCost)
                    cost += nextGene0.changeOverCost
                else:
                    (dnaArray[gene1Item][gene1Position]).prevGene = (
                        prevGene0.item, prevGene0.position)

            (dnaArray[gene1Item][gene1Position]).period = newPeriod
            (dnaArray[gene1Item][gene1Position]).calculateChangeOverCost()
            (dnaArray[gene1Item][gene1Position]).calculateStockingCost()
            (dnaArray[gene1Item][gene1Position]).calculateCost()

            # print("Ending with gene1 : ", (dnaArray[gene1Item][gene1Position]))

            cost += (dnaArray[gene1Item][gene1Position]).cost

            # print("kokooooooooooo : ", cost, stringIdentifier, dnaArray)

        else:
            gene2Item, gene2Position = swap[1][0], swap[1][1]
            period1, period2 = (
                chromosome.dnaArray[gene1Item][gene1Position]).period, (
                    chromosome.dnaArray[gene2Item][gene2Position]).period
            stringIdentifier[period1] = gene2Item + 1
            stringIdentifier[period2] = gene1Item + 1
            stringIdentifier = tuple(stringIdentifier)

            if Chromosome.pool[stringIdentifier] is not None:
                with LocalSearchNode.mutationsMemory["lock"]:
                    LocalSearchNode.mutationsMemory["db"][(
                        stringIdentifier, swap[0],
                        swap[1])] = Chromosome.pool[stringIdentifier]
                return Chromosome.pool[stringIdentifier]

            dnaArray = copy.deepcopy(chromosome.dnaArray)

            # fixing the chromosome dnaArray and calculating the cost
            # print("dnaArray : ", dnaArray)
            gene1 = (dnaArray[gene1Item][gene1Position])
            gene2 = (dnaArray[gene2Item][gene2Position])

            cost = chromosome.cost

            cost -= (gene1.cost + gene2.cost)

            # print("preveeees --- : ", gene1.prevGene, gene2.prevGene)

            if gene1.prevGene == (gene2Item, gene2Position):
                gene1.prevGene = gene2.prevGene
                gene2.prevGene = (gene1.item, gene1.position)
                nextGene = Chromosome.nextProdGene(gene1.period, dnaArray,
                                                   chromosome.stringIdentifier)

                # print("before before nextGene A: ", nextGene)

                if nextGene is not None:
                    # print("before nextGene A: ", nextGene, nextGene.changeOverCost)
                    cost -= nextGene.changeOverCost
                    prevGene = (gene2.item, gene2.position)
                    # print("prevGene A: ", prevGene)
                    nextGene.prevGene = prevGene
                    nextGene.calculateChangeOverCost()
                    nextGene.calculateCost()
                    cost += nextGene.changeOverCost
                    # print("after nextGene A: ", nextGene, nextGene.changeOverCost)

            elif gene2.prevGene == (gene1Item, gene1Position):
                gene2.prevGene = gene1.prevGene
                gene1.prevGene = (gene2.item, gene2.position)
                nextGene = Chromosome.nextProdGene(gene2.period, dnaArray,
                                                   chromosome.stringIdentifier)

                # print("before before nextGene B: ", nextGene)

                if nextGene is not None:
                    # print("before nextGene B: ", nextGene, nextGene.changeOverCost)
                    cost -= nextGene.changeOverCost
                    prevGene = (gene1.item, gene1.position)
                    # print("prevGene B: ", prevGene)
                    nextGene.prevGene = prevGene
                    nextGene.calculateChangeOverCost()
                    nextGene.calculateCost()
                    cost += nextGene.changeOverCost
                    # print("after nextGene B: ", nextGene, nextGene.changeOverCost)

            else:
                gene1.prevGene, gene2.prevGene = gene2.prevGene, gene1.prevGene
                nextGene1, nextGene2 = Chromosome.nextProdGene(
                    gene1.period, dnaArray,
                    chromosome.stringIdentifier), Chromosome.nextProdGene(
                        gene2.period, dnaArray, chromosome.stringIdentifier)

                # print("before before nextGene1 nextGene2 : ", nextGene1, nextGene2)

                if nextGene1 is not None:
                    # print("before nextGene1 : ", nextGene1, nextGene1.changeOverCost)
                    cost -= nextGene1.changeOverCost
                    prevGene = (gene2.item, gene2.position)
                    # print("prevGene : ", prevGene)
                    nextGene1.prevGene = prevGene
                    nextGene1.calculateChangeOverCost()
                    nextGene1.calculateCost()
                    cost += nextGene1.changeOverCost
                    # print("after nextGene1 : ", nextGene1, nextGene1.changeOverCost)

                if nextGene2 is not None:
                    # print("before nextGene2 : ", nextGene2, nextGene2.changeOverCost)
                    cost -= nextGene2.changeOverCost
                    prevGene = (gene1.item, gene1.position)
                    # print("prevGene : ", prevGene)
                    nextGene2.prevGene = prevGene
                    nextGene2.calculateChangeOverCost()
                    nextGene2.calculateCost()
                    cost += nextGene2.changeOverCost
                    # print("after nextGene2 : ", nextGene2, nextGene2.changeOverCost)

            gene1.period, gene2.period = gene2.period, gene1.period

            gene1.calculateStockingCost()
            gene1.calculateChangeOverCost()
            gene1.calculateCost()

            gene2.calculateStockingCost()
            gene2.calculateChangeOverCost()
            gene2.calculateCost()

            cost += (gene1.cost + gene2.cost)

        # print("Coooooost : ", cost, stringIdentifier, dnaArray, Chromosome.createFromIdentifier(stringIdentifier))

        result = Chromosome()
        result.dnaArray = dnaArray
        result.stringIdentifier = stringIdentifier
        result.cost = cost

        with LocalSearchNode.mutationsMemory["lock"]:
            LocalSearchNode.mutationsMemory["db"][(result.stringIdentifier,
                                                   swap[0], swap[1])] = result
        return result