def dynamic_analizer(topfile, trajfile, topformat, trjformat, dist_file, selection_atom): # cargo la dinamica. print('Loading Molecular Dynamic simulations....\n') traj = Universe(topfile, trajfile, topology_format=topformat, format=trjformat) #X = np.empty(shape=[0, 3]) #creo una lista de residuos residues = traj.select_atoms("all").residues.resids #print(residues) # Defino el numero de frames. NumbOfFrames = len(traj.trajectory) # Progress bar homespinner(True) #for ts in traj.trajectory: # a=1 from MDAnalysis.analysis import contacts q1q2 = contacts.q1q2(traj, 'name CA', radius=8) q1q2.run() f, ax = plt.subplots(1, 2, figsize=plt.figaspect(0.5)) ax[0].plot(q1q2.timeseries[:, 0], q1q2.timeseries[:, 1], label='q1') ax[0].plot(q1q2.timeseries[:, 0], q1q2.timeseries[:, 2], label='q2') ax[0].legend(loc='best') ax[0].set(xlabel='Frame', ylabel='Fraction Q') ax[1].plot(q1q2.timeseries[:, 1], q1q2.timeseries[:, 2], '.-') ax[1].set(xlabel='Q1', ylabel='Q2', title='2D Native Contacts Analysis.') f.savefig('q1q2.pdf') #Finish Progress bar. homespinner(False) print( "\n\nDone\n\nThe q1,q2 plots were saved in the current directory...\n")
def test_q1q2(): u = mda.Universe(PSF, DCD) q1q2 = contacts.q1q2(u, 'name CA', radius=8) q1q2.run() q1_expected = [1., 0.98092643, 0.97366031, 0.97275204, 0.97002725, 0.97275204, 0.96276113, 0.96730245, 0.9582198, 0.96185286, 0.95367847, 0.96276113, 0.9582198, 0.95186194, 0.95367847, 0.95095368, 0.94187103, 0.95186194, 0.94277929, 0.94187103, 0.9373297, 0.93642144, 0.93097184, 0.93914623, 0.93278837, 0.93188011, 0.9373297, 0.93097184, 0.93188011, 0.92643052, 0.92824705, 0.92915531, 0.92643052, 0.92461399, 0.92279746, 0.92643052, 0.93278837, 0.93188011, 0.93369664, 0.9346049, 0.9373297, 0.94096276, 0.9400545, 0.93642144, 0.9373297, 0.9373297, 0.9400545, 0.93006358, 0.9400545, 0.93823797, 0.93914623, 0.93278837, 0.93097184, 0.93097184, 0.92733878, 0.92824705, 0.92279746, 0.92824705, 0.91825613, 0.92733878, 0.92643052, 0.92733878, 0.93278837, 0.92733878, 0.92824705, 0.93097184, 0.93278837, 0.93914623, 0.93097184, 0.9373297, 0.92915531, 0.93188011, 0.93551317, 0.94096276, 0.93642144, 0.93642144, 0.9346049, 0.93369664, 0.93369664, 0.93278837, 0.93006358, 0.93278837, 0.93006358, 0.9346049, 0.92824705, 0.93097184, 0.93006358, 0.93188011, 0.93278837, 0.93006358, 0.92915531, 0.92824705, 0.92733878, 0.92643052, 0.93188011, 0.93006358, 0.9346049, 0.93188011] assert_array_almost_equal(q1q2.timeseries[:, 1], q1_expected) q2_expected = [0.94649446, 0.94926199, 0.95295203, 0.95110701, 0.94833948, 0.95479705, 0.94926199, 0.9501845, 0.94926199, 0.95387454, 0.95202952, 0.95110701, 0.94649446, 0.94095941, 0.94649446, 0.9400369, 0.94464945, 0.95202952, 0.94741697, 0.94649446, 0.94188192, 0.94188192, 0.93911439, 0.94464945, 0.9400369, 0.94095941, 0.94372694, 0.93726937, 0.93819188, 0.93357934, 0.93726937, 0.93911439, 0.93911439, 0.93450185, 0.93357934, 0.93265683, 0.93911439, 0.94372694, 0.93911439, 0.94649446, 0.94833948, 0.95110701, 0.95110701, 0.95295203, 0.94926199, 0.95110701, 0.94926199, 0.94741697, 0.95202952, 0.95202952, 0.95202952, 0.94741697, 0.94741697, 0.94926199, 0.94280443, 0.94741697, 0.94833948, 0.94833948, 0.9400369, 0.94649446, 0.94741697, 0.94926199, 0.95295203, 0.94926199, 0.9501845, 0.95664207, 0.95756458, 0.96309963, 0.95756458, 0.96217712, 0.95756458, 0.96217712, 0.96586716, 0.96863469, 0.96494465, 0.97232472, 0.97140221, 0.9695572, 0.97416974, 0.9695572, 0.96217712, 0.96771218, 0.9704797, 0.96771218, 0.9695572, 0.97140221, 0.97601476, 0.97693727, 0.98154982, 0.98431734, 0.97601476, 0.9797048, 0.98154982, 0.98062731, 0.98431734, 0.98616236, 0.9898524, 1.] assert_array_almost_equal(q1q2.timeseries[:, 2], q2_expected)
# contact analysis import MDAnalysis as mda from MDAnalysis.analysis import contacts u = mda.Universe("/home/bdv1/VMD_SaveFolder/PRB-0-HIE_ProteinOnly.pdb", "/home/bdv1/Desktop/PRB-0-protein-000.dcd") eitrig = contacts.q1q2(u, 'segid AP1', radius=3) eitrig.run() eitrig.save('con_try_contacts.txt')
import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import numpy u = mda.Universe('/home/bdv1/Desktop/rpn11_ubq.psf', '/home/bdv1/Desktop/rpn11_ubq.dcd') sel_1 = "segid RN11" sel_2 = "segid UBQ" selection_1 = u.select_atoms(sel_1) selection_2 = u.select_atoms(sel_2) print("Printing selection_1") print selection_1 print("Printing selection_2") print selection_2 q1q2 = contacts.q1q2(u, 'segid RN11', radius=8) q1q2.run() f, ax = plt.subplots(1, 2, figsize=plt.figaspect(0.5)) ax[0].plot(q1q2.timeseries[:, 0], q1q2.timeseries[:, 1], label='q1') ax[0].plot(q1q2.timeseries[:, 0], q1q2.timeseries[:, 2], label='q2') ax[0].legend(loc='best') ax[1].plot(q1q2.timeseries[:, 1], q1q2.timeseries[:, 2], '.-') f.show() plt.pause(20)
import MDAnalysis as mda from MDAnalysis.analysis import contacts from MDAnalysisTests.datafiles import PSF, DCD import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt u = mda.Universe(PSF, DCD) #u = mda.Universe("/home/bdv1/Desktop/rpn11_ubq.psf", "/home/bdv1/Desktop/rpn11_ubq.dcd") q1q2 = contacts.q1q2(u, 'name CA', radius=8) q1q2.run() plt.ion() f, ax = plt.subplots(1, 2, figsize=plt.figaspect(0.5)) ax[0].plot(q1q2.timeseries[:, 0], q1q2.timeseries[:, 1], label='q1') ax[0].plot(q1q2.timeseries[:, 0], q1q2.timeseries[:, 2], label='q2') ax[0].legend(loc='best') ax[1].plot(q1q2.timeseries[:, 1], q1q2.timeseries[:, 2], '.-') f.show() plt.pause(20)