示例#1
0
 def test_bonds(self):
     u = Universe(self.filename, guess_bonds=True)
     # need to force topology to load before querying individual atom bonds
     u.build_topology()
     bonds0 = u.select_atoms("segid B and (altloc A)")[0].bonds
     bonds1 = u.select_atoms("segid B and (altloc B)")[0].bonds
     assert_equal(len(bonds0), len(bonds1))
示例#2
0
def calc_rama(grof, xtcf, btime, etime):
    u = Universe(grof, xtcf)

    resname_query = 'resname GLY or resname VAL or resname PRO'
    atoms = u.selectAtoms(resname_query)
    resname = atoms.resnames()[0] # [0] because .resnames() returns a list of one element
    resid = atoms.resids()[0] # [0] because .resnames() returns a list of one element

    phi_query = ('(resname ACE and name C) or '
                 '(resname GLY or resname VAL or resname PRO and '
                 '(name N or name CA or name C))')

    psi_query = ('(resname GLY or resname VAL or resname PRO and (name N or name CA or name C or name NT)) or '
                 '(resname NH2 and name N)')

    # MDAnalysis will convert the unit of length to angstrom, though in Gromacs the unit is nm
    phi = u.selectAtoms(phi_query)
    psi = u.selectAtoms(psi_query)

    for _ in phi.atoms:
        print _

    for _ in psi.atoms:
        print _


    for ts in u.trajectory:
        if btime > ts.time:
            continue
        if etime > 0 and etime < ts.time:
            break

        yield '{0:.3f}  {1:.3f}  {2}-{3}\n'.format(
            phi.dihedral(), psi.dihedral(), resname, resid)
        U.print_progress(ts)
def main():
    u = Universe(
        '/Volumes/HD-siida/gtail_b1_sys/analysis/merged_aligned_complexes.pdb')
    #u = Universe('complex_models.pdb')
    print(u.atoms.segids)
    ca_integrinAB = u.select_atoms('segid A B and name CA')
    ca_lamininE8 = u.select_atoms('segid C D E and name CA')

    lower, upper = 6.0, 10.0
    with open('model_no.out', 'w') as fout:
        fout.write(
            f'#MODEL NO, nViolations (if r<{lower}), nContacts ({lower}<=r<={upper}) \n'
        )

        for i, frame in enumerate(tqdm(u.trajectory),
                                  1):  # Note that i starts with 1.
            distances = distance.cdist(ca_integrinAB.positions,
                                       ca_lamininE8.positions,
                                       metric='euclidean')
            #nViolations = len(distances[distances<=cutoff])
            nViolations = len(distances[distances < lower])
            nContacts = len(distances[(distances <= upper)
                                      & (distances >= lower)])
            #            score = nContacts -nViolations
            if nViolations != 0:
                score = -0.59 * np.log(nContacts / nViolations)
            else:
                score = np.nan
            fout.write(f'{i}, {nViolations}, {nContacts}, {score}\n')
示例#4
0
 def test_write_selection(self):
     ref = Universe(mol2_molecule)
     gr0 = ref.select_atoms("name C*")
     gr0.write(self.outfile)
     u = Universe(self.outfile)
     gr1 = u.select_atoms("name C*")
     assert_equal(len(gr0), len(gr1))
示例#5
0
def main():
    """Entry to validate_pbc.py"""

    if len(sys.argv) < 3:
        print "Please provide at least a reference file and a trajectory" \
              " for validation"
        sys.exit(1)

    argv = sys.argv[1:]
    ref_name = argv.pop(0)

    for xtc_name in argv:
        print "checking file " + xtc_name
        judger = True
        ref = Universe(ref_name)
        xtc = Universe(ref_name, xtc_name)

        total = 0.0
        count = 0

        for frame in xtc.trajectory:
            rmsd = alignto(xtc, ref, select='protein and name CA')
            if rmsd[1] > THRESHOLD:
                print "At " + str(frame.frame) + " violates the criterion."
                print "trajectory file " + xtc_name + " is invalid."
                judger = False
                break
            total += rmsd[1]
            count += 1

        if judger:
            print "pass" + " - " + "average rmsd: " + str(total / count)
示例#6
0
 def test_bonds(self):
     u = Universe(self.filename, guess_bonds=True)
     # need to force topology to load before querying individual atom bonds
     u.build_topology()
     bonds0 = u.select_atoms("segid B and (altloc A)")[0].bonds
     bonds1 = u.select_atoms("segid B and (altloc B)")[0].bonds
     assert_equal(len(bonds0), len(bonds1))
示例#7
0
文件: cluster.py 项目: Cloudac7/dpana
def lindemann_per_frames(u: Universe, select_lang):
    """Calculate the lindemann index for each atom AND FRAME

    Warning this can produce extremly large ndarrays in memory
    depending on the size of the cluster and the ammount of frames.

    Parameters
    ----------
    u : MDA trajectory instance.
    select_lang : select language.

    Returns
    -------
    a ndarray of shape (len_frames, natoms, natoms)
    """
    # natoms = natoms
    sele_ori = u.select_atoms(select_lang)
    natoms = len(sele_ori)
    nframes = len(u.trajectory)
    len_frames = len(u.trajectory)
    array_mean = np.zeros((natoms, natoms))
    array_var = np.zeros((natoms, natoms))
    # array_distance = np.zeros((natoms, natoms))
    iframe = 1
    lindex_array = np.zeros((len_frames, natoms, natoms))
    cluster = u.select_atoms(select_lang, updating=True)
    for q, ts in enumerate(u.trajectory):
        # print(ts)
        coords = cluster.positions
        n, p = coords.shape
        array_distance = distance.cdist(coords, coords)

        #################################################################################
        # update mean and var arrays based on Welford algorithm suggested by Donald Knuth
        #################################################################################
        for i in range(natoms):
            for j in range(i + 1, natoms):
                xn = array_distance[i, j]
                mean = array_mean[i, j]
                var = array_var[i, j]
                delta = xn - mean
                # update mean
                array_mean[i, j] = mean + delta / iframe
                # update variance
                array_var[i, j] = var + delta * (xn - array_mean[i, j])
        iframe += 1
        if iframe > nframes + 1:
            break

        for i in range(natoms):
            for j in range(i + 1, natoms):
                array_mean[j, i] = array_mean[i, j]
                array_var[j, i] = array_var[i, j]

        lindemann_indices = np.divide(np.sqrt(np.divide(array_var, nframes)),
                                      array_mean)
        # lindemann_indices = np.nanmean(np.sqrt(array_var/nframes)/array_mean, axis=1)
        lindex_array[q] = lindemann_indices

    return np.array([np.nanmean(i, axis=1) for i in lindex_array])
示例#8
0
def from_mol2(f):
    path = str(datapath / f)
    u = Universe(path)
    elements = [guess_atom_element(n) for n in u.atoms.names]
    u.add_TopologyAttr("elements", np.array(elements, dtype=object))
    u.atoms.types = np.array([x.upper() for x in u.atoms.types], dtype=object)
    return Molecule.from_mda(u, force=True)
示例#9
0
def main():
    # get options
    options = parse_options()
    psf = options.psf_file
    dcd = options.dcd_file
    chain1 = options.segid1
    chain2 = options.segid2
    selection1 = options.selection1
    selection2 = options.selection2
    co = options.cutoff
    output = options.output_file
    visu = options.pymol
    pdbvisu = options.pymol_pdb

    # use MDAnalysis to read trajectory
    u = Universe(psf, dcd)

    # get contact probability
    cp = GetContacts(u)
    contactprob, bio1, bio2 = cp.run(chain1, chain2, selection1, selection2,
                                     co)
    np.savetxt(output, contactprob, fmt='%4.2f', delimiter=" ")

    # generate pymol scripts if needed
    if visu == 'Y':
        # if no pdb file is supplied, write one from trajectory, first frame
        if pdbvisu == None:
            seleforpymol = u.select_atoms("segid %s or segid %s" %
                                          (chain1, chain2))
            seleforpymol.write('forpymol.pdb', remarks=None)
            pdbvisu = 'forpymol.pdb'
            # check pdb file format for weird encoding
            check_pdb(pdbvisu)

        pymol_contact_visu(contactprob, pdbvisu, chain1, chain2, bio1, bio2)
示例#10
0
def ave_stru(reffile, trajfile, startframe=0, endframe=-1):
    '''
    Get the average structure from a trajectory
    '''
    traj = Universe(reffile, trajfile)
    ref = Universe(reffile)
    ave = ref.atoms

    cycle, count = 20, 0
    rmsd, rmsd_ = 0.0, 0.0
    if endframe == -1 or endframe > traj.trajectory.numframes:
        endframe = traj.trajectory.numframes

    rmsds = np.empty(((endframe - startframe) / freq + 1, ))
    coords = np.empty(
        ((endframe - startframe) / freq + 1, traj.atoms.numberOfAtoms(), 3))

    while count < cycle:
        for ts in traj.trajectory[startframe:endframe:freq]:
            rmsds[(ts.frame - startframe) / freq] = analysis.align.alignto(
                traj, ave, select='name CA')[1]
            coords[(ts.frame - startframe) / freq] = traj.atoms.positions

        rmsd = np.mean(rmsds)
        print rmsd
        ave.set_positions(np.mean(coords, axis=0))

        if np.abs(rmsd - rmsd_) < 0.00001:
            break
        else:
            rmsd_ = rmsd
    return (rmsds, ave)
示例#11
0
文件: unun.py 项目: zyxue/pymyg_tools
def count_interactions(grof, xtcf, btime, etime, cutoff):
    cutoff = cutoff * 10  # * 10: convert from nm to angstrom to work with MDAnalysis
    u = Universe(grof, xtcf)
    query = ('(resname PRO and (name CB or name CG or name CD)) or'
             '(resname VAL and (name CG1 or name CG2)) or'
             '(resname GLY and name CA) or'
             '(resname ALA and name CB)')
    # MDAnalysis will convert the unit of length to angstrom, though in Gromacs the unit is nm
    atoms = u.selectAtoms(query)
    for ts in u.trajectory:
        if btime > ts.time:
            continue
        if etime > 0 and etime < ts.time:
            break

        numcount = 0
        for i, ai in enumerate(atoms):
            for j, aj in enumerate(atoms):
                # to avoid counting the same pair twices,
                # the 2 resid cannot be neigbors
                if i < j and abs(ai.resid - aj.resid) >= 2:
                    d = np.linalg.norm(ai.pos - aj.pos)
                    if d <= cutoff:
                        numcount += 1
        yield '{0:10.0f}{1:8d}\n'.format(ts.time, numcount)
        utils.print_progress(ts)
示例#12
0
文件: transform.py 项目: zyxue/xit
def gen_hbond_map(xpm, ndx, grof):
    xpm = objs.XPM(xpm)
    hbndx = objs.HBNdx(ndx)

    univ = Universe(grof)
    pro_atoms = univ.selectAtoms('protein and not resname ACE and not resname NH2')
    hbonds_by_resid = hbndx.map_id2resid(pro_atoms)

    # pl: peptide length
    pl = pro_atoms.residues.numberOfResidues()

    hblist = []
    for i, j in zip(hbonds_by_resid, xpm.color_count):
        # j[1] is the probability of hbonds, while j[0] = 1 - j[1]
        # format: [resid of donor, resid of acceptor]
        # -1 is because resid in MDAnalysis starts from 1, minus so as to fit
        # -into hb_map initialized by hb_map
        hblist.append([i[0]-1, i[1]-1, j[1]])

    # +1: for missing resname ACE, such that it's easier to proceed in the next
    # step
    pl1 = pl + 1
    hb_map = np.zeros((pl1, pl1))
    for _ in hblist:
        hb_map[_[0]][_[1]] = _[2]

    return hb_map
示例#13
0
def classifyResiduesIntoTwo(apo_pdb, holo_pdb, ligname, cutoff=4.0):
    S_aromatic_resname = set(['PHE', 'TRP', 'TYR', 'HIS'])
    u_holo, u_apo = Universe(holo_pdb), Universe(apo_pdb)
    ligand = u_holo.select_atoms(f'resname {ligname}')
    holo = u_holo.select_atoms(f'not resname {ligname}')
    apo = u_apo.select_atoms(f'protein')

    resids = []
    S_cryptic, S_not_cryptic = [], []
    # -- calculate distances from atoms of a ligand to those of residues in an apo state
    # -- the aim is to detect residues in a cryptic site.
    # -- if the distance is less than a threshold (i.e., CRASHED!), then the aromatic residue is considered as cryptic one.
    for iatom in ligand:
        for jatom in apo:
            distance = np.linalg.norm(iatom.position - jatom.position)

            if distance <= cutoff and jatom.resname in S_aromatic_resname:
                #print(f'{iatom.name}-{iatom.resname}, {jatom.name}-{jatom.resname}{jatom.resid}, {distance}')
                resids.append(jatom.resid)
                S_cryptic.append(f'{jatom.resname}{jatom.resid}')
    S_cryptic = set(S_cryptic)
    # -- a set of aromatic residue's names are generated here. note that this is specialised for aromatic residues
    S_all_aroma = set([
        f'{residue.resname}{residue.resid}' for residue in holo.residues
        if residue.resname in S_aromatic_resname
    ])
    S_not_cryptic = S_all_aroma - S_cryptic

    return set(S_cryptic), set(S_not_cryptic)
示例#14
0
def sequence_spacing(pf, grof, xtcf, peptide_length, atom_sel, output=None):
    u = Universe(grof, xtcf)
    # this selection part should be better customized
    # here, only have been backbone atoms are used, u.selectAtoms doesn't
    # include Hydrogen atoms
    # REMMEMBER: OPTIONS verification should be done in main ONLY!
    residues = [
        u.selectAtoms(atom_sel.format(i)) for i in range(2, peptide_length)
    ]
    ijdist_dict = {}
    for ts in u.trajectory:
        for i, resi in enumerate(residues):
            for j, resj in enumerate(residues):
                if i < j:
                    resi_pos = resi.centerOfGeometry()  # residue i position
                    resj_pos = resj.centerOfGeometry()  # residue j position
                    ijdist = np.linalg.norm(resi_pos - resj_pos)
                    dij = j - i  # distance between i and j
                    if dij not in ijdist_dict.keys():
                        ijdist_dict[dij] = [dij]
                    else:
                        ijdist_dict[dij].append(ijdist)
        if ts.step % 2000000 == 0:  # 2000ps
            print "time step: {0:d}".format(ts.step)
    return ijdist_dict
示例#15
0
def calc_tilt_end_to_end(universe: mda.Universe,
                         resid_up,
                         resid_down,
                         fname="TMD_tilt.dat"):
    ''' Calculate tilt related to angle between zaxis and resid_down --> resid_up
        Takes COM of resids
    '''
    fstr2 = '{: <15}{: <20}'
    fstr = '{: <15}{: <20.5f}'
    with open(fname, "w") as outf:
        print(fstr2.format("time", "tilt"), file=outf)
        for t in range(universe.trajectory.n_frames):
            time = universe.trajectory[t].time
            LOGGER.info("At %s", time)
            zaxis = np.array([0, 0, 1])
            sel_u = universe.select_atoms("resid {}".format(resid_up))
            sel_d = universe.select_atoms("resid {}".format(resid_down))
            pos_u = sel_u.center_of_mass()
            pos_d = sel_d.center_of_mass()
            costilt = np.dot(
                (pos_d - pos_u), zaxis) / np.linalg.norm(pos_d - pos_u)
            angle = np.arccos(costilt) * (180 / np.pi)
            if angle > 90:
                angle -= 180
            print(fstr.format(time, abs(angle)), file=outf)
示例#16
0
    def _activate(self):
        """Make the universe and attach it.

        """
        if not self.topology:
            self._treant._universe = None
            return

        uh = Universehound(self)
        paths = uh.fetch()
        topology = paths['top']
        trajectory = paths['traj']

        if not trajectory:
            self._treant._universe = Universe(topology, **self.kwargs)
        else:
            self._treant._universe = Universe(topology, *trajectory,
                                              **self.kwargs)

        self._apply_resnums()

        # update the universe definition; will automatically build current
        # path variants for each file
        # if read-only, move on
        try:
            self._set_topology(topology)
            self._set_trajectory(trajectory)
        except OSError:
            warnings.warn(
                "Cannot update paths for universe; "
                " state file is read-only.")
示例#17
0
 def test_write(self):
     ref = Universe(mol2_molecules)
     ref.atoms.write(self.outfile)
     u = Universe(self.outfile)
     assert_equal(len(u.atoms), len(ref.atoms))
     assert_equal(len(u.trajectory), 1)
     assert_array_equal(u.atoms.positions, ref.atoms.positions)
示例#18
0
def main():
    arg_parser = argparse.ArgumentParser(
        description='通过给定残基名称,残基内原子数目,原子在残基内的索引(从0开始),计算原子的坐标。')
    arg_parser.add_argument('resname', action='store', help='残基名称')
    arg_parser.add_argument('atoms_num',
                            type=int,
                            action='store',
                            help='残基内原子数目')
    arg_parser.add_argument('index',
                            type=int,
                            action='store',
                            help='原子的索引,索引从0开始')
    arg_parser.add_argument('topology_file',
                            action='store',
                            help='拓扑文件,例如gro, pdb')
    args = arg_parser.parse_args()

    resname, atoms_num, index = args.resname, args.atoms_num, args.index

    universe = Universe(args.topology_file)
    atom_groups = universe.selectAtoms("resname " + resname)
    if len(atom_groups) % atoms_num != 0:
        print("拓扑文件内对应残基原子总数不是所给原子数目的整数倍,请给予正确的原子数目。")
        exit(1)

    positions = []
    for i in range(0, len(atom_groups), atoms_num):
        positions.append(atom_groups[i:i + atoms_num][index].position)

    print("The positions of atoms %s is:" % (index))
    for i in positions:
        print(i)
示例#19
0
文件: unun.py 项目: zyxue/pymyg_tools
def count_interactions(grof, xtcf, btime, etime, cutoff):
    cutoff = cutoff * 10 # * 10: convert from nm to angstrom to work with MDAnalysis
    u = Universe(grof, xtcf)
    query = ('(resname PRO and (name CB or name CG or name CD)) or'
             '(resname VAL and (name CG1 or name CG2)) or'
             '(resname GLY and name CA) or'
             '(resname ALA and name CB)')
    # MDAnalysis will convert the unit of length to angstrom, though in Gromacs the unit is nm
    atoms = u.selectAtoms(query)
    for ts in u.trajectory:
        if btime > ts.time:
            continue
        if etime > 0 and etime < ts.time:
            break

        numcount = 0
        for i, ai in enumerate(atoms):
            for j, aj in enumerate(atoms):
                # to avoid counting the same pair twices,
                # the 2 resid cannot be neigbors
                if i < j and abs(ai.resid - aj.resid) >= 2: 
                    d = np.linalg.norm(ai.pos - aj.pos)
                    if d <= cutoff:
                        numcount += 1
        yield '{0:10.0f}{1:8d}\n'.format(ts.time,  numcount)
        utils.print_progress(ts)
示例#20
0
def cluster_coordinates(  # TODO: rewrite the method
    nvt_run: Universe,
    select_dict: Dict[str, str],
    run_start: int,
    run_end: int,
    species: List[str],
    distance: float,
    basis_vectors: Optional[Union[List[np.ndarray], np.ndarray]] = None,
    cluster_center: str = "center",
) -> np.ndarray:
    """Calculates the average position of a cluster.

    Args:
        nvt_run: An MDAnalysis ``Universe`` containing wrapped trajectory.
        select_dict: A dictionary of atom species selection, where each atom species name is a key
            and the corresponding values are the selection language.
        run_start: Start frame of analysis.
        run_end: End frame of analysis.
        species: A list of species in the cluster.
        distance: The coordination cutoff distance.
        basis_vectors: The basis vector for normalizing the coordinates of the cluster atoms.
        cluster_center: Cluster center atom species.

    Returns:
        An array of coordinates of the cluster atoms.
    """
    trj_analysis = nvt_run.trajectory[run_start:run_end:]
    cluster_center_atom = nvt_run.select_atoms(select_dict.get(cluster_center),
                                               periodic=True)[0]
    selection = ("(" + " or ".join(s for s in species) + ") and (around " +
                 str(distance) + " index " + str(cluster_center_atom.index) +
                 ")")
    shell = nvt_run.select_atoms(selection, periodic=True)
    cluster = []
    for atom in shell:
        coord_list = []
        for ts in trj_analysis:
            coord_list.append(atom.position)
        cluster.append(np.mean(np.array(coord_list), axis=0))
    cluster_array = np.array(cluster)
    if basis_vectors:
        if len(basis_vectors) == 2:
            vec1 = basis_vectors[0]
            vec2 = basis_vectors[1]
            vec3 = np.cross(vec1, vec2)
            vec2 = np.cross(vec1, vec3)
        elif len(basis_vectors) == 3:
            vec1 = basis_vectors[0]
            vec2 = basis_vectors[1]
            vec3 = basis_vectors[2]
        else:
            raise ValueError("incorrect vector format")
        vec1 = vec1 / np.linalg.norm(vec1)
        vec2 = vec2 / np.linalg.norm(vec2)
        vec3 = vec3 / np.linalg.norm(vec3)
        basis_xyz = np.transpose([vec1, vec2, vec3])
        cluster_norm = np.linalg.solve(basis_xyz, cluster_array.T).T
        cluster_norm = cluster_norm - np.mean(cluster_norm, axis=0)
        return cluster_norm
    return cluster_array
示例#21
0
文件: unvp.py 项目: zyxue/pymyg_tools
def count_interactions(grof, xtcf, btime, cutoff, debug):
    u = Universe(grof, xtcf)
    un_query = ('(resname PRO and (name CB or name CG or name CD)) or'
                '(resname VAL and (name CG1 or name CG2)) or'
                '(resname GLY and name CA) or'
                '(resname ALA and name CB)')
    vp_query = ('name OW')
    # MDAnalysis will convert the unit of length to angstrom, though in Gromacs the unit is nm
    un_atoms = u.selectAtoms(un_query)
    for ts in u.trajectory:
        if ts.time >= btime:
            numcount = 0
            tropo_vp_atoms = u.selectAtoms(
                '({0}) and around 8 ({1})'.format(vp_query, un_query))
            # different from when calculating unun, there is no overlap atom
            # between un_atoms & tropo_vp_atoms
            for ai in un_atoms:
                for aj in tropo_vp_atoms:
                    d = np.linalg.norm(ai.pos - aj.pos)
                    if d <= cutoff:
                        numcount += 1
            yield '{0:10.0f}{1:8d}\n'.format(ts.time,  numcount)
        # per 100 frames, num of frames changes with the size of xtc file, for debugging
        if debug and ts.frame % 2 == 0: 
            print "time: {0:10.0f}; step: {1:10d}; frame: {2:10d}".format(ts.time, ts.step, ts.frame)
示例#22
0
文件: util.py 项目: htz1992213/mdgo
def res_dict_from_select_dict(u: Universe,
                              select_dict: Dict[str, str]) -> Dict[str, str]:
    """
    Infer res_dict (residue selection) from select_dict (atom selection) in a MDAnalysis.universe object.

    Args:
        u: The universe object to assign resnames to.
        select_dict: A dictionary of atom species, where each atom species name is a key
                and the corresponding values are the selection language.

    return:
        A dictionary of resnames.
    """
    saved_select = []
    res_dict = {}
    for key, val in select_dict.items():
        res_select = "same resid as (" + val + ")"
        res_group = u.select_atoms(res_select)
        if key in ["cation", "anion"] or res_group not in saved_select:
            saved_select.append(res_group)
            res_dict[key] = res_select
    if ("cation" in res_dict and "anion" in res_dict and u.select_atoms(
            res_dict.get("cation")) == u.select_atoms(res_dict.get("anion"))):
        res_dict.pop("anion")
        res_dict["salt"] = res_dict.pop("cation")
    return res_dict
示例#23
0
文件: transform.py 项目: zyxue/xit
def gen_hbond_map(xpm, ndx, grof):
    xpm = objs.XPM(xpm)
    hbndx = objs.HBNdx(ndx)

    univ = Universe(grof)
    pro_atoms = univ.selectAtoms(
        'protein and not resname ACE and not resname NH2')
    hbonds_by_resid = hbndx.map_id2resid(pro_atoms)

    # pl: peptide length
    pl = pro_atoms.residues.numberOfResidues()

    hblist = []
    for i, j in zip(hbonds_by_resid, xpm.color_count):
        # j[1] is the probability of hbonds, while j[0] = 1 - j[1]
        # format: [resid of donor, resid of acceptor]
        # -1 is because resid in MDAnalysis starts from 1, minus so as to fit
        # -into hb_map initialized by hb_map
        hblist.append([i[0] - 1, i[1] - 1, j[1]])

    # +1: for missing resname ACE, such that it's easier to proceed in the next
    # step
    pl1 = pl + 1
    hb_map = np.zeros((pl1, pl1))
    for _ in hblist:
        hb_map[_[0]][_[1]] = _[2]

    return hb_map
示例#24
0
    def move_and_add_box(self,
                         initial: str,
                         final: str,
                         move: bool = True,
                         pbc: Tuple = (1, 1, 1)):
        """
        Moves molecules a random vector, applies pbcs and writes box dimensions.

        Parameters
        ----------
        initial : str
            Path with the pdb to modify.
        final : str
            Path where the modified pdb will be written.
        move : bool, optional
            If True all the molecules in the system will be displaced a random
            vector and then pbcs will be applied to bring back the atoms to the
            box. Each of the random vector components is selected with a
            homogeneous distribution from 0 to the corresponding box side.
            Setting to False this parameter is useful to write the box
            dimensions in the initial file.

        """
        universe = Universe(initial)
        universe.dimensions = [*self.box_side, 90, 90, 90]

        if move:
            maximum_displ = self.box_side * self.input_info['pbc']
            universe.atoms.positions += maximum_displ * np.random.random(3)
            universe.atoms.pack_into_box()

            # Rotation in caso of walls to avoid acumulation in one side.
            # universe.atoms.positions = self.rotate_box(universe.atoms.positions, np.array([1, 0, 0]), np.pi)

        universe.atoms.write(final)
示例#25
0
def count_interactions(grof, xtcf, btime, cutoff, debug):
    u = Universe(grof, xtcf)
    un_query = ('(resname PRO and (name CB or name CG or name CD)) or'
                '(resname VAL and (name CG1 or name CG2)) or'
                '(resname GLY and name CA) or'
                '(resname ALA and name CB)')
    vp_query = ('name OW')
    # MDAnalysis will convert the unit of length to angstrom, though in Gromacs the unit is nm
    un_atoms = u.selectAtoms(un_query)
    for ts in u.trajectory:
        if ts.time >= btime:
            numcount = 0
            tropo_vp_atoms = u.selectAtoms('({0}) and around 8 ({1})'.format(
                vp_query, un_query))
            # different from when calculating unun, there is no overlap atom
            # between un_atoms & tropo_vp_atoms
            for ai in un_atoms:
                for aj in tropo_vp_atoms:
                    d = np.linalg.norm(ai.pos - aj.pos)
                    if d <= cutoff:
                        numcount += 1
            yield '{0:10.0f}{1:8d}\n'.format(ts.time, numcount)
        # per 100 frames, num of frames changes with the size of xtc file, for debugging
        if debug and ts.frame % 2 == 0:
            print "time: {0:10.0f}; step: {1:10d}; frame: {2:10d}".format(
                ts.time, ts.step, ts.frame)
示例#26
0
def main():
    arg_parser = argparse.ArgumentParser(description='通过给定残基名称,残基内原子数目,两个原子在残基内的索引(从0开始),计算所有残基内这两个原子之间的直线距离。')
    arg_parser.add_argument('resname', action='store', help='残基名称')
    arg_parser.add_argument('atoms_num', type=int, action='store', help='残基内原子数目')
    arg_parser.add_argument('index1', type=int, action='store', help='第一个原子的索引,索引从0开始')
    arg_parser.add_argument('index2', type=int, action='store', help='第二个原子的索引,索引从0开始')
    arg_parser.add_argument('topology_file', action='store', help='拓扑文件,例如gro, pdb')
    args = arg_parser.parse_args()

    resname, atoms_num, index1, index2 = args.resname, args.atoms_num, args.index1, args.index2

    universe = Universe(args.topology_file)
    atom_groups = universe.selectAtoms("resname " + resname)
    if len(atom_groups) % atoms_num != 0:
        print("拓扑文件内对应残基原子总数不是所给原子数目的整数倍,请给予正确的原子数目。")
        exit(1)

    atoms1 = []
    atoms2 = []
    for i in range(0, len(atom_groups), atoms_num):
        atoms1.append(atom_groups[i:i + atoms_num][index1])
        atoms2.append(atom_groups[i:i + atoms_num][index2])

    dists = dist(AtomGroup(atoms1), AtomGroup(atoms2))
    print("The distance between atoms %s and %s is:" % (index1, index2))
    for i in dists[2]:
        print(i)
    print("The average distance between atoms %s and %s is:" % (index1, index2))
    print(np.average(dists[2]))
示例#27
0
def count_interactions(A):
    logger.debug('loading {0}'.format(A.grof))
    univ = Universe(A.grof)
    logger.debug('loaded {0}'.format(A.grof))

    pro_atoms = univ.selectAtoms('protein and not resname ACE and not resname NH2')
    pl = pro_atoms.residues.numberOfResidues()
    # +1: for missing resname ACE, such that it's easier to proceed in the next
    # step

    logger.debug('loading {0}, {1}'.format(A.grof, A.xtcf))
    u = Universe(A.grof, A.xtcf)
    logger.debug('loaded {0}, {1}'.format(A.grof, A.xtcf))

    # Just for reference to the content of query when then code was first
    # written and used
    # query = ('(resname PRO and (name CB or name CG or name CD)) or'
    #          '(resname VAL and (name CG1 or name CG2)) or'
    #          '(resname GLY and name CA) or'
    #          '(resname ALA and name CB)')

    query = A.query
    atoms = u.selectAtoms(query)
    logger.info('Number of atoms selected: {0}'.format(atoms.numberOfAtoms()))

    # MDAnalysis will convert the unit of length to angstrom, though in Gromacs
    # the unit is nm
    cutoff = A.cutoff * 10
    nres_away = A.nres_away
    btime = A.btime
    etime = A.etime
    nframe = 0
    unun_map = None
    for ts in u.trajectory:
        if btime > ts.time:
            continue
        if etime > 0 and etime < ts.time:
            break

        nframe += 1
        map_ = np.zeros((pl+1, pl+1))                   # map for a single frame
        for i, ai in enumerate(atoms):
            ai_resid = ai.resid
            for j, aj in enumerate(atoms):
                aj_resid = aj.resid
                # to avoid counting the same pair twices,
                # the 2 resid cannot be neigbors
                if i < j and aj_resid - ai_resid >= nres_away:
                    d = np.linalg.norm(ai.pos - aj.pos)
                    if d <= cutoff:
                        # -1: resid in MDAnalysis starts from 1
                        map_[ai_resid-1][aj_resid-1] += 1
        if unun_map is None:
            unun_map = map_
        else:
            unun_map = unun_map + map_
        utils.print_progress(ts)
    sys.stdout.write("\n")
    return unun_map / float(nframe)
示例#28
0
    def __init__(self, top_file, trj_files, selection='backbone', **kwargs):
        # Used to store the result
        self.result = []

        self._u = Universe(top_file, trj_files)
        self._ag = self._u.select_atoms(selection)
        super(IntramolecularDistance,
              self).__init__(self._ag.universe.trajectory, **kwargs)
示例#29
0
def save_systems(flex: mda.Universe, protein: mda.Universe,
                 crystal: mda.Universe, dir: str):
    def sel(resnum, resname, segid, icode) -> str:
        s = f"(resid {resnum}{icode} and resname {resname} and segid {segid})"

        return s

    flexres = flex.select_atoms("protein").residues

    max_rmsd = -1

    residues = []
    for res in flexres:
        ressel = (sel(res.resnum, res.resname, res.segid, res.icode) +
                  " and not (type H or name H*)")

        # Select single residue
        p_res = protein.select_atoms(ressel)
        c_res = crystal.select_atoms(ressel)

        assert p_res.n_atoms == c_res.n_atoms

        pfname = os.path.join(
            dir, f"pflex-{res.resname}-{res.segid}{res.resnum}{res.icode}.pdb")
        cfname = os.path.join(
            dir, f"cflex-{res.resname}-{res.segid}{res.resnum}{res.icode}.pdb")

        # Write out PDB files
        p_res.write(pfname)
        c_res.write(cfname)

        residues.append((res.resnum, res.resname, res.segid, res.icode))

    # Check that all flexible residues are listed
    assert len(residues) == len(flexres)

    # TODO: Can be improved by using ressel
    selection = "".join([
        sel(id, name, chain, icode) + " or "
        for id, name, chain, icode in residues
    ])
    selection = selection[:-4]  # Remove final " or "

    # Remove H atoms
    # TODO: Possibly need perception for atom name, when type is not present
    selection = f"({selection}) and not (type H or name H*)"

    p_atoms = protein.select_atoms(selection)
    c_atoms = crystal.select_atoms(selection)

    # Check that the number of atoms in the two selections is equal
    assert len(p_atoms) == len(c_atoms)

    pfname = os.path.join(dir, "pflex.pdb")
    cfname = os.path.join(dir, "cflex.pdb")

    p_atoms.write(pfname)
    c_atoms.write(cfname)
示例#30
0
def main():
  
    args = parse_args()
    u = Universe(args.input)
    gr = u.selectAtoms(args.selection)
    print(gr)
    if args.center:
        center(gr)    
    gr.write(args.output)
示例#31
0
文件: util.py 项目: htz1992213/mdgo
def assign_name(u: Universe, names: np.ndarray):
    """
    Assign resnames to residues in a MDAnalysis.universe object. The function will not overwrite existing names.

    Args:
        u: The universe object to assign resnames to.
        names: The element name array.
    """
    u.add_TopologyAttr("name", values=names)
示例#32
0
文件: phi_psi.py 项目: zyxue/pybin
def main(struct):
    u = Universe(struct)

    phi = u.selectAtoms(PHI_SEL)
    psi = u.selectAtoms(PSI_SEL)
    
    print u.filename
    print 'phi: {0:8.2f}'.format(phi.dihedral())
    print 'psi: {0:8.2f}'.format(psi.dihedral())
    print 
示例#33
0
 def test_atomgroups(self):
     u = Universe(self.filename)
     segidB0 = len(u.select_atoms("segid B and (not altloc B)"))
     segidB1 = len(u.select_atoms("segid B and (not altloc A)"))
     assert_equal(segidB0, segidB1)
     altlocB0 = len(u.select_atoms("segid B and (altloc A)"))
     altlocB1 = len(u.select_atoms("segid B and (altloc B)"))
     assert_equal(altlocB0, altlocB1)
     sum = len(u.select_atoms("segid B"))
     assert_equal(sum, segidB0 + altlocB0)
示例#34
0
def num_of_neighbor_simple(
    nvt_run: Universe,
    center_atom: Atom,
    distance_dict: Dict[str, float],
    select_dict: Dict[str, str],
    run_start: int,
    run_end: int,
) -> Dict[str, np.ndarray]:
    """Calculates solvation structure type (1 for SSIP, 2 for CIP and 3 for AGG) with respect to the ``enter_atom``
    in the specified frame range.

    Args:
        nvt_run: An MDAnalysis ``Universe`` containing wrapped trajectory.
        center_atom: The solvation shell center atom.
        distance_dict: A dict of coordination cutoff distance of the neighbor species.
        select_dict: A dictionary of atom species selection, where each atom species name is a key
            and the corresponding values are the selection language.
        run_start: Start frame of analysis.
        run_end: End frame of analysis.

    Returns:
        A dict with "total" as the key and an array of the solvation structure type in the specified frame range
        as the value.
    """

    time_count = 0
    trj_analysis = nvt_run.trajectory[run_start:run_end:]
    center_selection = "same type as index " + str(center_atom.index)
    assert len(
        distance_dict
    ) == 1, "Please only specify the counter-ion species in the distance_dict"
    species = list(distance_dict.keys())[0]
    cn_values = np.zeros(int(len(trj_analysis)))
    for ts in trj_analysis:
        selection = select_shell(select_dict, distance_dict, center_atom,
                                 species)
        shell = nvt_run.select_atoms(selection, periodic=True)
        shell_len = len(shell)
        if shell_len == 0:
            cn_values[time_count] = 1
        elif shell_len == 1:
            selection_species = select_shell(center_selection, distance_dict,
                                             shell.atoms[0], species)
            shell_species = nvt_run.select_atoms(selection_species,
                                                 periodic=True)
            shell_species_len = len(shell_species) - 1
            if shell_species_len == 0:
                cn_values[time_count] = 2
            else:
                cn_values[time_count] = 3
        else:
            cn_values[time_count] = 3
        time_count += 1
    cn_values = {"total": cn_values}
    return cn_values
示例#35
0
def split_molecules(
    u: mda.Universe,
    keep_ions: bool = False
) -> Dict[str, Union[mda.AtomGroup, List[mda.AtomGroup]]]:
    """
    Split different molecules (protein, water, ligands, ...) within a structure in separate files.

    Args:
        u (mda.Universe): MDAnalysis universe
        keep_ions (bool, optional): Flag to keep/ignore ions

    Returns:
        A dictionaty with the name of the selection and the corresponding ``mda.AtomGroup``
        (or a list of ``mda.AtomGroup`` is there are multiple molecules with the same name).
    """

    split = {}

    # Select protein
    protein = u.select_atoms("protein")
    if len(protein.atoms) != 0:  # Check if protein is present
        split["protein"] = protein

    # Select water molecules
    for water_name in ["WAT", "HOH"]:
        water = u.select_atoms(f"resname {water_name}")

        if len(water.atoms) != 0:
            break  # If selection is not empty, stop
    if len(water.atoms) != 0:  # Check if water is present
        split["water"] = water

    # Other molecules
    other = u.select_atoms("all") - protein - water
    for res in other.residues:  # Loop over all "other" residues
        name = res.resname

        if re.search("[A-Z]?[+-]", name) is not None and not keep_ions:
            break  # Skip ion if keep_ions=True

        try:
            old = split[name]

            if type(old) is list:
                split[name].append(res)
            else:
                split[name] = [old, res]

        except KeyError:

            split[name] = res

    return split
示例#36
0
def _list_types(coordinates_file):

    # Check the extension
    _check_input_file(coordinates_file, extensions=[".gro"])

    # Load the system
    system = Universe(coordinates_file)

    # List the residue names
    resnames = system.select_atoms("all").resnames

    return np.unique(resnames)
示例#37
0
def generate_universe(topology, trajectory=None):
    print('Generating Universe...')
    if trajectory is None or trajectory == '':
        u = Universe(topology)
    else:
        u = Universe(topology, trajectory)

    x, y, z = u.dimensions[:3]
    print(f'Universe with dimensions x: {x}, y: {y}, z: {z} loaded!')
    n_waters = u.select_atoms('resname WAT').n_residues
    print(f'{n_waters} water molecules detected!')

    return u
示例#38
0
    def test_write_in_loop(self):
        ref = Universe(mol2_molecules)

        with mda.Writer(self.outfile) as W:
            for ts in ref.trajectory:
                W.write(ref.atoms)
        u = Universe(self.outfile)
        assert_equal(len(u.atoms), len(ref.atoms))
        assert_equal(len(u.trajectory), len(ref.trajectory))
        assert_array_equal(u.atoms.positions, ref.atoms.positions)
        u.trajectory[199]
        ref.trajectory[199]
        assert_array_equal(u.atoms.positions, ref.atoms.positions)
示例#39
0
文件: myrg.py 项目: zyxue/pymyg_tools
def calc_rg(grof, xtcf, btime, debug):
    u = Universe(grof, xtcf)
    query = 'name CA'
    # MDAnalysis will convert the unit of length to angstrom, though in Gromacs the unit is nm
    atoms = u.selectAtoms(query)
    natoms = atoms.numberOfAtoms()
    for ts in u.trajectory:
        if ts.time >= btime:
            com = atoms.centerOfMass()                                # center of mass
            _sum = sum((sum(i**2 for i in (a.pos - com)) for a in atoms))
            rg = np.sqrt(_sum / natoms)
            yield '{0:10.0f}{1:15.6f}\n'.format(ts.time, rg)
        # per 100 frames, num of frames changes with the size of xtc file, for debugging
        if debug and ts.frame % 2 == 0: 
            print "time: {0:10.0f}; step: {1:10d}; frame: {2:10d}".format(ts.time, ts.step, ts.frame)
示例#40
0
 def __setstate__(self, dict):
     self.__dict__.update(dict)
     #reconstruct the universe
     self.u = Universe(dict['structure_filename'], dict['trajectory_filename'])
     apply_mass_map(self.u, dict['mass_map'])
     self.u.trajectory.periodic = dict['trajectory_is_periodic']
     for f in self.tar_forces + self.ref_forces:
         cat = f.get_category()
         if(not (cat is None)):
             self.ref_cats.append(cat)
         f.setup_hook(self.u)
示例#41
0
def sequence_spacing(grof, xtcf, btime, etime, peptide_length, atom_sel):
    u = Universe(grof, xtcf)
    # this selection part should be better customized
    # here, only have been backbone atoms are used, u.selectAtoms doesn't
    # include Hydrogen atoms
    # REMMEMBER: ARGS verification should be done in main ONLY!
    # range works like this:

    # in MDAnalysis, resid starts from 1, in sequence_spacing.py, we don't count
    # the C- and N- termini, so it's from 2 to peptide_len+2
    residues = [u.selectAtoms(atom_sel.format(i)) for i in range(2, peptide_length + 2)]
    ijdist_dict = {}
    for ts in u.trajectory:
        # btime, etime defaults to 0, if etime is 0, loop till the end of the
        # trajectory
        if btime > ts.time:
            continue
        if etime > 0 and etime < ts.time:
            break

        # the good stuff
        for i, resi in enumerate(residues):
            for j, resj in enumerate(residues):
                # to remove duplicate since resi & resj are within the same peptide 
                if i < j:
                    dij = abs(i - j)
                    d_atomi_atomj = []
                    # loop through every atom in both residues
                    for atomi in resi:
                        for atomj in resj:
                            d_atomi_atomj.append(
                                np.linalg.norm(atomi.pos - atomj.pos))
                # add the result to the dictionary
                    ij_dist = np.average(d_atomi_atomj)   # distance between i and j
                    if dij not in ijdist_dict.keys():
                        ijdist_dict[dij] = [ij_dist]
                    else:
                        ijdist_dict[dij].append(ij_dist)
        utils.print_progress(ts)

    return ijdist_dict
def getWaterCoorWithH(self,centre,psf,dcd,outputFile):
    rho=Universe(psf,dcd)
    H2OCoordinate=[]
    no=0
    title='resname'+'    '+'atomid'+'    '+'resnumber'+'    X    Y     Z   '+'   '+'segname'+'  '+'frameNo'+'   '+'centreNo'+'\n'
    outputFile.write(title)
    for oxygenInforSet in self:
        H2OCoordinateSet=[]
        
        
        print 'There were',len(oxygenInforSet),'waters in the'
        for oxygenInfor in oxygenInforSet:
##            no1+=1
##            print no1
            frameNo=oxygenInfor[-2]
            frameNo=int(frameNo)-1
            segName=oxygenInfor[-3]
            resNumber=oxygenInfor[2]
            frame=rho.trajectory[frameNo]
            infor='segid '+segName+' and resid '+resNumber
            selected=rho.selectAtoms(infor)
            atomID=[]
            for atoms in selected.atoms:
                ID=str(atoms).split()[2][:-1]
                atomID.append(ID)
            selectedResId=selected.resids()
            selectedResNa=selected.resnames()
            coordsOH1H2=selected.coordinates()
            for i in range(3):
                atomInfor=str(selectedResNa[0])+'    '+str(atomID[i])+'    '+str(resNumber)+'    '+str(coordsOH1H2[i])[1:-1]+'   '+segName+'    '+str(frameNo)+'    '+str(no)+'\n'
                outputFile.write(atomInfor)
            H2OCoordinateSet.append(coordsOH1H2)

        no+=1

        H2OCoordinate.append(H2OCoordinateSet)
        print no,'is finished'
    outputFile.close()
    return H2OCoordinate
示例#43
0
文件: pdbGeo.py 项目: dmcskim/pdbGeo
def process_trajectory(args):
	start, end = args.region.split('-')
	plane = [int(x) for x in args.plane.split(',')]
	univ = Universe(args.topo,args.traj)
	results = []
	for ts in univ.trajectory:
		norm = get_normal(univ, atoms=plane)
		temp = get_region(univ, start, end)
		if norm is not None and temp is not None and len(temp) > 0:
			angle = get_vector(temp)
			name = univ.split('/')[-1]
			if angle is not None:
				results.append(dot(norm, angle))
	if args.graph and len(results) > 0:
		import matplotlib.pyplot as plt
		ysort = sorted(list(enumerate(results,start=1)), key=lambda kv: float(kv[1]))
		x, y = zip(*ysort)
		ind = arange(len(x))
		plt.plot(y, ind, color='r')
		plt.yticks(ind, x)
		print ysort
		plt.show()
	return 
示例#44
0
def count_interactions(grof, xtcf, btime, cutoff, debug):
    u = Universe(grof, xtcf)
    query = ('(resname PRO and (name CB or name CG or name CD)) or'
             '(resname VAL and (name CG1 or name CG2)) or'
             '(resname GLY and name CA) or'
             '(resname ALA and name CB)')
    # MDAnalysis will convert the unit of length to angstrom, though in Gromacs the unit is nm
    atoms = u.selectAtoms(query)
    for ts in u.trajectory:
        if ts.time >= btime:
            numcount = 0
            for i, ai in enumerate(atoms):
                for j, aj in enumerate(atoms):
                    # to avoid counting the same pair twices,
                    # the 2 resid cannot be neigbors
                    if i < j and abs(ai.resid - aj.resid) >= 2: 
                        d = np.linalg.norm(ai.pos - aj.pos)
                        if d <= cutoff:
                            numcount += 1
            yield '{0:10.0f}{1:8d}\n'.format(ts.time,  numcount)
        # per 100 frames, num of frames changes with the size of xtc file, for debugging
        if debug and ts.frame % 2 == 0: 
            print "time: {0:10.0f}; step: {1:10d}; frame: {2:10d}".format(ts.time, ts.step, ts.frame)
示例#45
0
def sequence_spacing(pf, grof, xtcf, peptide_length, atom_sel, output=None):
    u = Universe(grof, xtcf)
    # this selection part should be better customized
    # here, only have been backbone atoms are used, u.selectAtoms doesn't
    # include Hydrogen atoms
    # REMMEMBER: OPTIONS verification should be done in main ONLY!
    residues = [u.selectAtoms(atom_sel.format(i)) for i in range(2, peptide_length)]
    ijdist_dict = {}
    for ts in u.trajectory:
        for i, resi in enumerate(residues):
            for j, resj in enumerate(residues):
                if i < j:
                    resi_pos = resi.centerOfGeometry()                # residue i position
                    resj_pos = resj.centerOfGeometry()                # residue j position
                    ijdist = np.linalg.norm(resi_pos - resj_pos)
                    dij = j - i                                       # distance between i and j
                    if dij not in ijdist_dict.keys():
                        ijdist_dict[dij] = [dij]
                    else:
                        ijdist_dict[dij].append(ijdist)
        if ts.step % 2000000 == 0:                             # 2000ps
            print "time step: {0:d}".format(ts.step)
    return ijdist_dict
示例#46
0
def main():
    arg_parser = argparse.ArgumentParser(description='通过给定残基名称,残基内原子数目,原子在残基内的索引(从0开始),计算原子的坐标。')
    arg_parser.add_argument('resname', action='store', help='残基名称')
    arg_parser.add_argument('atoms_num', type=int, action='store', help='残基内原子数目')
    arg_parser.add_argument('index', type=int, action='store', help='原子的索引,索引从0开始')
    arg_parser.add_argument('topology_file', action='store', help='拓扑文件,例如gro, pdb')
    args = arg_parser.parse_args()

    resname, atoms_num, index = args.resname, args.atoms_num, args.index

    universe = Universe(args.topology_file)
    atom_groups = universe.selectAtoms("resname " + resname)
    if len(atom_groups) % atoms_num != 0:
        print("拓扑文件内对应残基原子总数不是所给原子数目的整数倍,请给予正确的原子数目。")
        exit(1)

    positions = []
    for i in range(0, len(atom_groups), atoms_num):
        positions.append(atom_groups[i:i + atoms_num][index].position)

    print("The positions of atoms %s is:" % (index))
    for i in positions:
        print(i)
示例#47
0
job = Job(inputfiles=dict(sequence='sequences/1IFC_R151IFC.fasta',
                          ref_psf='coord/1ifc_xtal.psf',
                          ref_pdb='coord/1ifc_xtal.pdb',
                          trj_psf='GSBPsetup/ifabp_apo_gsbp_15_0.psf',
                          trj_pdb='GSBPsetup/ifabp_apo_gsbp_15_0.pdb',
                          ),
          outputfiles=dict(fit_pdb='GSBPsetup/rmsfit_ifabp_apo_gsbp_15_0.pdb',
                           ))

job.stage()

from MDAnalysis import Universe
import hop.trajectory

print "Setting up the Universes..."
ref = Universe(job.filenames['ref_psf'],pdbfilename=job.filenames['ref_pdb'])
trj = Universe(job.filenames['trj_psf'],job.filenames['trj_pdb'])

ref_resids    = [a.resid for a in ref.selectAtoms('name CA')]
target_resids = [a.resid for a in trj.selectAtoms('name CA')]

print "Alignment and selection string..."
selection = hop.trajectory.fasta2select(job.filenames['sequence'],
                                        ref_resids=ref_resids,target_resids=target_resids,
                                        is_aligned=True)


print "Fitting trajectory to reference..."
hop.trajectory.RMS_fit_trj(trj,ref, select=selection, filename=job.filenames['fit_pdb'])

print "Done: result is '%(fit_pdb)s'" % job.filenames
示例#48
0
import numpy

from MDAnalysis import Universe, collection, Timeseries
from MDAnalysis.tests.datafiles import PSF, DCD

try:
    import matplotlib
    matplotlib.use('agg')  # no interactive plotting, only save figures
    from pylab import errorbar, legend, xlabel, ylabel, savefig, clf, gca, draw
    have_matplotlib = True
except ImportError:
    have_matplotlib = False


universe = Universe(PSF, DCD)
protein = universe.selectAtoms("protein")

numresidues = protein.numberOfResidues()

collection.clear()
for res in range(2, numresidues-1):
    print "Processing residue %d" % res
    #  selection of the atoms involved for the phi for resid '%d' %res
    ## selectAtoms("atom 4AKE %d C"%(res-1), "atom 4AKE %d N"%res, "atom %d 4AKE CA"%res, "atom 4AKE %d C" % res)
    phi_sel = universe.residues[res].phi_selection()
    print phi_sel; 
    #  selection of the atoms involved for the psi for resid '%d' %res
    psi_sel = universe.residues[res].psi_selection()
    print psi_sel; 
    # collect the timeseries of a dihedral
示例#49
0
def calc_bond_length(grof, xtcf, btime, etime, debug):
    # thebonds contains all the bonds that I am interested
    thebonds = { #atom names should be UNIQUE within each residue for this script
        'BACKBONE_INTRA': [('N', 'CA'), ('CA', 'C'), ('C', 'O'), ],       # backbone, intramolecular interactions
        # PB: peptide bond, which is the only intermolecular bonds that I am interested
        'PB':  [('C', 'N'),],

        'GLY': [('CA', 'HA1'),],
        'PRO': [('CA', 'CB'), ('CB', 'CG'), ('CG', 'CD'), ('CD', 'N' )],
        'VAL': [('CA', 'CB'), ('CB', 'CG1'), ('CB', 'CG2')],
        
        'MeO': [('C', 'OA'), ('C', 'H'), ('OA', 'HO')],
        'SOL': [('OW', 'HW1')],
        }

    aas = ['GLY', 'PRO', 'VAL']                                      # rl: residue list
    solvents = ['MeO', 'SOL']

    # initialize ibonds
    ibonds = {}                    # interested bonds, not very legible to human
    for k in thebonds:
        ibonds[k] = {}
        if k in aas:
            for kk in thebonds[k] + thebonds['BACKBONE_INTRA']:
                ibonds[k][tuple(sorted(kk))] = []
        elif k in solvents:
            for kk in thebonds[k]:
                ibonds[k][tuple(sorted(kk))] = []
            

    ibonds['PB'] = {}
    ibonds['PB'][('C', 'N')] = []

    # data structure would be (to do)
    # ibonds = {
    #     'PRO': {
    #         (a1, b1):[(atom_object1, atom_object2), (atom_object3, atom_object4), ... , ],
    #         (a2, b2):[(atom_object1, atom_object2), (atom_object3, atom_object4), ... , ],
    #         ...
    #         },
    #     'VAL': {
    #         (a1, b1):[(atom_object1, atom_object2), (atom_object3, atom_object4), ... , ],
    #         (a2, b2):[(atom_object1, atom_object2), (atom_object3, atom_object4), ... , ],
    #         ...
    #         },
    #     'GLY': {
    #         (a1, b1):[(atom_object1, atom_object2), (atom_object3, atom_object4), ... , ],
    #         (a2, b2):[(atom_object1, atom_object2), (atom_object3, atom_object4), ... , ],
    #         ...
    #         },
    #     }

    univer = Universe(grof, xtcf)

    atom_selection = "not resname ACE and not resname NH2"            # get rid of the ends
    # atom_selection = "resname MeO and resid 3000"
    atoms = univer.selectAtoms(atom_selection)

    # initialize ibonds data structure
    # a bondname is composed of readable plain text
    # a bond is composed of Atom object
    for ki, ai in enumerate(atoms):
        for kj, aj in enumerate(atoms):
            if ki < kj:
                if ai.resid == aj.resid: # collecting intramolecular bonds associated with real atom objects
                    resname= ai.resname                               # will also equal aj.resname
                    bondname = tuple(sorted([ai.name, aj.name]))
                    if bondname in ibonds[resname]:
                        bond = [ai, aj]
                        ibonds[resname][bondname].append(bond)
                elif ai.resid - aj.resid == -1: # collecting itermolecular bonds: i.e. peptide bond
                    bondname = tuple([ai.name, aj.name])
                    if bondname == ('C', 'N'):
                        bond = [ai, aj]
                        ibonds['PB'][bondname].append(bond)

################################################################################
# VERIFICATION STATUS: ibonds initiation verified for
# sq1w00_md.gro & sq1m00_md.gro
# 2012-04-25
#     for i in ibonds:
#         for j in ibonds[i]:
#             print i, j, len(ibonds[i][j])
    
#     from pprint import pprint as pp
#     pp(ibonds)

# VAL ('CB', 'CG2') 14
# VAL ('C', 'CA') 14
# VAL ('CA', 'N') 14
# VAL ('CB', 'CG1') 14
# VAL ('C', 'O') 14
# VAL ('CA', 'CB') 14
# PRO ('CD', 'CG') 7
# PRO ('C', 'CA') 7
# PRO ('CA', 'N') 7
# PRO ('CA', 'CB') 7
# PRO ('C', 'O') 7
# PRO ('CD', 'N') 7
# PRO ('CB', 'CG') 7
# SOL ('HW1', 'OW') 0
# PB ('C', 'N') 34
# GLY ('CA', 'N') 14
# GLY ('C', 'O') 14
# GLY ('CA', 'HA1') 14
# GLY ('C', 'CA') 14
# MeO ('HO', 'OA') 0
# MeO ('C', 'OA') 0
# MeO ('C', 'H') 0

#     import sys
#     sys.exit()

################################################################################

    # Just for Printing the Header
    sorted_resname = sorted(ibonds.keys()) # sort to keep the value in the right order
    partial_header = []
    for resname in sorted_resname:
        resname_header = []                         # the header specific to residue
        for bondname in sorted(ibonds[resname].keys()):
            # bn: since bondname has been used in previous codes
            bn = '{0}|{1}'.format(resname[0], '-'.join(bondname))
            resname_header.append('{0:9s}'.format(bn))
        partial_header.extend(resname_header)
    yield '#{0:8s}{1}\n'.format('t(ps)', ''.join(partial_header))

    # import sys
    # sys.exit()

    # Production Calculation
    # use < when for formatting values to align with headers, and the width will
    # be 1 col narrower than that in the corresponding header
    for ts in univer.trajectory:
        # for debugging only
        if debug and ts.frame % 2 == 0:
            print "time: {0:10.0f}; step: {1:10d}; frame: {2:10d}".format(ts.time, ts.step, ts.frame)

        if etime > ts.time >= btime:
            partial_yield = []
            for resname in sorted_resname:
                resname_yield = []
                for bondname in sorted(ibonds[resname].keys()):
                    bonds = ibonds[resname][bondname]
                    ds = []
                    for bond in bonds:
                        r = bond[0].pos - bond[1].pos # end-to-end vector from atom positions
                        d = np.linalg.norm(r)  # distance
                        ds.append(d)
                    resname_yield.append('{0:<8.3f}'.format(np.average(ds))) #, np.std(ds))
                partial_yield.extend(resname_yield)
            # a space in order to align with # in the header
            yield ' {0:<8.0f}{1}\n'.format(ts.time, ' '.join(partial_yield))
示例#50
0
import numpy.linalg

if '-h' in sys.argv:
	print 'Input topology file first and dcd file second and the new filename output 3rd.It will write the Raius of Gyration and N to C terminal distance.'
	sys.exit()               
               
TOP = sys.argv[1]
DCD = sys.argv[2]
FILENAME=sys.argv[3]        
#TOP = '/Users/ronaldholt/1JJS_autopsf.psf'              
#DCD = '/Users/ronaldholt/Google_Drive/ORNL_Research/1JJS/1JJS_1us.dcd'    
#FILENAME="1JJS"


         
u =Universe(TOP,DCD)
# Extract position of N and C terminal can calculate distace, write it to a file along with the radius of gyration (RG)

f=open(str(FILENAME) +'Rg_data.txt','w')

nterm = u.P1.N[0]   # can access structure via segid (s4AKE) and atom name
cterm = u.P1.C[-1]  # ... takes the last atom named 'C'
bb = u.selectAtoms('protein and backbone')  # a selection (a AtomGroup)
for ts in u.trajectory:     # iterate through all frames
  r = cterm.pos - nterm.pos # end-to-end vector from atom positions
  d = numpy.linalg.norm(r)  # end-to-end distance
  rgyr = bb.radiusOfGyration()  # method of a AtomGroup; updates with each frame
  print >>f, " %d %f %f " % (ts.frame, d, rgyr)
f.close()
#Extract distance of N to C terminal and RG overtrajectory
         
示例#51
0
    def __init__(
        self, psf, pdb, delta=1.0, atomselection="name OH2", metadata=None, padding=4.0, sigma=None, verbosity=3
    ):
        """Construct the density from psf and pdb and the atomselection.

        DC = BfactorDensityCreator(psf, pdb, delta=<delta>, atomselection=<MDAnalysis selection>,
                                  metadata=<dict>, padding=2, sigma=None)
        density = DC.PDBDensity()

        psf     Charmm psf topology file
        pdb     PDB file
        atomselection
                selection string (MDAnalysis syntax) for the species to be analyzed
        delta   approximate bin size for the density grid (same in x,y,z)
                (It is slightly adjusted when the box length is not an integer multiple
                of delta.)
        metadata
                dictionary of additional data to be saved with the object
        padding increase histogram dimensions by padding (on top of initial box size)
        sigma   width (in Angstrom) of the gaussians that are used to build up the
                density; if None then uses B-factors from pdb
        verbosity=int  level of chattiness; 0 is silent, 3 is verbose

        For assigning X-ray waters to MD densities one might have to use a sigma
        of about 0.5 A to obtain a well-defined and resolved x-ray water density
        that can be easily matched to a broader density distribution.

        """
        from MDAnalysis import Universe

        set_verbosity(verbosity)  # set to 0 for no messages
        u = Universe(psf, pdbfilename=pdb)
        group = u.selectAtoms(atomselection)
        coord = group.coordinates()
        logger.info(
            "BfactorDensityCreator: Selected %d atoms (%s) out of %d total.",
            coord.shape[0],
            atomselection,
            len(u.atoms),
        )
        smin = numpy.min(coord, axis=0) - padding
        smax = numpy.max(coord, axis=0) + padding

        BINS = fixedwidth_bins(delta, smin, smax)
        arange = zip(BINS["min"], BINS["max"])
        bins = BINS["Nbins"]

        # get edges by doing a fake run
        grid, self.edges = numpy.histogramdd(numpy.zeros((1, 3)), bins=bins, range=arange, normed=False)
        self.delta = numpy.diag(map(lambda e: (e[-1] - e[0]) / (len(e) - 1), self.edges))
        self.midpoints = map(lambda e: 0.5 * (e[:-1] + e[1:]), self.edges)
        self.origin = map(lambda m: m[0], self.midpoints)
        numframes = 1

        if sigma is None:
            # histogram individually, and smear out at the same time
            # with the appropriate B-factor
            if numpy.any(group.bfactors == 0.0):
                wmsg = "BfactorDensityCreator: Some B-factors are Zero."
                warnings.warn(wmsg, category=hop.MissingDataWarning)
                logger.warn(wmsg)
            rmsf = Bfactor2RMSF(group.bfactors)
            grid *= 0.0  # reset grid
            self.g = self._smear_rmsf(coord, grid, self.edges, rmsf)
        else:
            # histogram 'delta functions'
            grid, self.edges = numpy.histogramdd(coord, bins=bins, range=arange, normed=False)
            logger.info("Histogrammed %6d atoms from pdb.", len(group.atoms))
            # just a convolution of the density with a Gaussian
            self.g = self._smear_sigma(grid, sigma)

        try:
            metadata["psf"] = psf
        except TypeError:
            metadata = dict(psf=psf)
        metadata["pdb"] = pdb
        metadata["atomselection"] = atomselection
        metadata["numframes"] = numframes
        metadata["sigma"] = sigma
        self.metadata = metadata

        # Density automatically converts histogram to density for isDensity=False
        logger.info("BfactorDensityCreator: Histogram completed (initial density in Angstrom**-3)\n")
示例#52
0
                Similarity Analysis: a Method for Quantifying Macromolecular
                Pathways. `arXiv:1505.04807v1`_ [q-bio.QM], 2015.

.. SeeAlso:: :mod:`MDAnalysis.analysis.psa`

"""

from MDAnalysis import Universe
from MDAnalysis.analysis.align import rotation_matrix
from MDAnalysis.analysis.psa import PSAnalysis

if __name__ == '__main__':

    print("Generating AdK CORE C-alpha reference coordinates and structure...")
    # Read in closed/open AdK structures; work with C-alphas only
    u_closed = Universe('structs/adk1AKE.pdb')
    u_open = Universe('structs/adk4AKE.pdb')
    ca_closed = u_closed.select_atoms('name CA')
    ca_open = u_open.select_atoms('name CA')

    # Move centers-of-mass of C-alphas of each structure's CORE domain to origin
    adkCORE_resids = "(resid 1:29 or resid 60:121 or resid 160:214)"
    u_closed.atoms.translate(-ca_closed.select_atoms(adkCORE_resids).center_of_mass())
    u_open.atoms.translate(-ca_open.select_atoms(adkCORE_resids).center_of_mass())

    # Get C-alpha CORE coordinates for each structure
    closed_ca_core_coords = ca_closed.select_atoms(adkCORE_resids).positions
    open_ca_core_coords = ca_open.select_atoms(adkCORE_resids).positions

    # Compute rotation matrix, R, that minimizes rmsd between the C-alpha COREs
    R, rmsd_value = rotation_matrix(open_ca_core_coords, closed_ca_core_coords)
"""
This program calculates center of mass and geometry.
At this time, I wanted to confirm if the com of s100b was canceled.

Caution: this program is specialized for s100b-CTD system.

Usage: python conform_com_cancel.py [ PDB file name ]   
"""



file_name = sys.argv[1]
print "Input file name : ", file_name

u = Universe(file_name)
f_out = open(file_name+"_comTraj.dat", "w")
print "No of snapshots: ", len(u.trajectory)

for i, ts in enumerate(u.trajectory):

    #Select the all atoms constitute s100b
    selected_atoms = u.select_atoms("resid 1-94")

    print "atom ids: ", selected_atoms.ids

    com = selected_atoms.center_of_mass()
    cog = selected_atoms.center_of_geometry()

    f_out.write(str(com[0]) + " " + str(com[1]) + " " + str(com[2]) + " \n")
示例#54
0
import sys
sys.path.append('/home/x/xiansu/pfs/program/numpy/lib/python2.6/site-packages')
from MDAnalysis import Universe, Writer
from MDAnalysis.analysis.distances import distance_array
import MDAnalysis
import numpy
from Numeric import *


top='npt.gro'
traj='md_extract1.trr'


water=Universe(top,traj)

o=water.selectAtoms('name O*')

resid=o.resids()
print resid

#resnu=o.resnums()
#resna=o.resnames()

atomInf=[]
for i in o.atoms:
    atomid= str(i).split()[2]
    atomseg=str(i).split()[-1]
    atomidandseg=[]
    atomidandseg.append(atomid)
    atomidandseg.append(atomseg)
    atomInf.append(atomidandseg)
示例#55
0
import MDAnalysis
from MDAnalysis import Universe
from MDAnalysis.analysis.contacts import calculate_contacts
import numpy as np
import pandas as pd

ref = Universe("conf_protein.gro.bz2")
u = Universe("conf_protein.gro.bz2", "traj_protein_0.xtc")

x = len(ref.select_atoms("protein"))
selA = "not name H* and resid 72-95 and bynum {}:{}".format(1, x//2)
selB = "not name H* and resid 72-95 and bynum {}:{}".format(x//2, x)


data = calculate_contacts(ref, u, selA, selB)
df = pd.DataFrame(data, columns=["Time (ps)", "Q"])
print(df)
    cont = 0

    if trajFormat == "NETCDF":
        trajFormat = "NCDF"

    for topologyPath, trajectoryPath in trajList:
        cont +=1
	print "Trajectory "+str(cont)+"/"+str(totalTrajNumber)+" "+topologyPath
        #canviar parametres simulationId
        simulationId = simulationInsert(con, 225000, 1, 1, 225000, topologyPath+" "+trajectoryPath)
        referenceInsert(con, simulationId, 'DNA ', 'X')    


        try:
            #uniTraj = Universe(topologyPath, format='PRMTOP')
            uniTraj = Universe(topologyPath, format=topoFormat)
        except:
            print "Error: Could not load topology file"
            return 100
               
        try:
	    #filename, fileExtension = os.path.splitext(trajectoryPath)
	    #if str.lower(fileExtension)== ".netcdf":
            # 	uniTraj.load_new(trajectoryPath, format='NCDF')
	    #else:
            #	uniTraj.load_new(trajectoryPath)
            uniTraj.load_new(trajectoryPath, format=trajFormat)
            #uniTraj.load_new(trajectoryPath)
        except:
            print "Error: Could not load trajectory file"
            return 200
示例#57
0
 def test_write_read(self):
     u = Universe(self.filename)
     u.select_atoms("all").write(self.outfile)
     u2 = Universe(self.outfile)
     assert_equal(len(u.atoms), len(u2.atoms))
示例#58
0
import numpy
import sys
sys.path.append('/home/x/xiansu/pfs/program/numpy/lib/python2.6/site-packages')
from MDAnalysis import Universe, Writer
from MDAnalysis.analysis.distances import distance_array
import MDAnalysis

DCD='water_analysis.dcd'
PSF='ionized.psf'

distanceMat=open('distance.txt','w')
rho=Universe(PSF,DCD)
##print rho
##print list(rho.residues)
p=rho.selectAtoms('protein and not backbone and not(name H*)')
w=rho.selectAtoms('resname TIP3 and not(name H*)')
##print list(p)
pc=p.coordinates()
print len(pc)
proteResid=p.resids()
waterResid=w.resids()
proteResnu=p.resnames()
waterResna=w.resnames()
waterResnu=w.resnums()
atomInf=[]
for i in w.atoms:
    atomid= str(i).split()[2]
    atomseg=str(i).split()[-1]
    atomidandseg=[]
    atomidandseg.append(atomid)
    atomidandseg.append(atomseg)