示例#1
0
import matplotlib.pyplot as plt

os.environ["TF_CPP_MIN_LOG_LEVEL"]='2'

## PRI
from ML_funcs import unpickle,create_model

## setting enviroment and data
MODEL_DIR = "F:/data_eeg/result_model_LA"
dic_file = 'F:/data_eeg/all_pkl/result_LA_pkl.pkl'
BATCH_SIZE = 128
EPOCHS = 20
num_Classes = 4

checkpoint = ModelCheckpoint(filepath=os.path.join(MODEL_DIR,'M_{epoch:03d}_l_{loss:.3f}_vl_{val_loss:.3f}.hdf5'),save_best_only=True)
all_data = unpickle(dic_file)

train_data, test_data, train_labels_one_hot, test_labels_one_hot = train_test_split(all_data['data'], all_data['labels'])
#print('before',train_labels_one_hot.shape, test_labels_one_hot.shape)
train_data = np.array(train_data)
test_data = np.array(test_data)
print(train_data.shape,test_data.shape)
train_data = np.reshape(train_data, (train_data.shape[0],600,1))
test_data = np.reshape(test_data, (test_data.shape[0],600,1)) # do it if need to change data struct
print(train_data.shape,test_data.shape)

# train_labels_one_hot = keras.utils.to_categorical(train_labels_one_hot, num_Classes)
# test_labels_one_hot = keras.utils.to_categorical(test_labels_one_hot, num_Classes)
train_data = train_data.astype('float32')
test_data = test_data.astype('float32')
print(train_data.shape, len(train_labels_one_hot))
示例#2
0
from ML_funcs import unpickle, minmax
from sklearn.decomposition import PCA
import sklearn.preprocessing
import matplotlib.pyplot as plt
import random
import keras
import pickle as pkl
dic_file_fa = 'F:/Insula-Gcamp6/record/record_split_by_behav/50%_nogo_hit_trials.pkl'
dic_file_cr = 'F:/Insula-Gcamp6/record/record_split_by_behav/50%_nogo_miss_trials.pkl'

result_path = 'C:/Users/manggny/Desktop/record_all/'

num_Classes = 2

#checkpoint = ModelCheckpoint(filepath=os.path.join(MODEL_DIR,'M_{epoch:03d}_l_{loss:.3f}_vl_{val_loss:.3f}.hdf5'),save_best_only=True)
data_fa = unpickle(dic_file_fa)
data_cr = unpickle(dic_file_cr)
ticks = 28
start = 0
time_acc = np.zeros(ticks)  # 1 for 0.2s, all 3s (-2s~1s)
loop_time = 1000
time_step = 25

lower = min(np.alen(data_fa), np.alen(data_cr))
# for i in range(np.alen(data_fa)):
# 	data_fa[i,:] = sklearn.preprocessing.scale(data_fa[i,:],axis=0) #,feature_range=(-1,1)
# for i in range(np.alen(data_cr)):
# 	data_cr[i, :] = sklearn.preprocessing.scale(data_cr[i, :], axis=0) #,feature_range=(-1,1)

for loop in range(loop_time):
    idx_data_fa = list(range(np.alen(data_fa)))
示例#3
0
文件: pca.py 项目: manggny/my_folder
import numpy as np
import pickle as pkl
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import MiniBatchKMeans


from matplotlib import style
style.use('ggplot')

from ML_funcs import unpickle

dic_name = 'C:/Users/Administrator/Desktop/EEGDATA/result_sub_features_4labels.pkl'

data = unpickle(dic_name)

print(np.array(data['data']).shape)

result_dic = {'data':[],'labels':data['labels']}
data = np.array(data['data'])

tr,ti,elec = np.shape(data)
result = np.zeros((tr,7,elec))

for i in range(elec):
    data_dummy = data[:,:,i]
    scal = StandardScaler()
    scal.fit(data_dummy)
    s_data = scal.transform(data_dummy)
    p = PCA(n_components = 7)
示例#4
0
from ML_funcs import unpickle, mean_range, create_model
import numpy as np
import pickle as pkl
import sklearn.preprocessing

all_data_path = 'C:/Users/Administrator/Desktop/EEGDATA/result_boot_r_0702.pkl'

data_all = unpickle(all_data_path)
print(data_all['labels'].count(0), data_all['labels'].count(1),
      data_all['labels'].count(2), data_all['labels'].count(3))

trial_num = len(data_all['data'])
datas = []
labels = []
print(data_all['data'][1].shape)
for i in range(trial_num):
    _, col = data_all['data'][i].shape
    print(data_all['data'][i].shape)
    if (data_all['labels'][i] == 1):  # or (data_all['labels'][i] == 2):
        print(data_all['labels'][i])
        for k in range(col):
            data_all['data'][i][:, k] = sklearn.preprocessing.scale(
                data_all['data'][i][:, k])
        datas.append(data_all['data'][i])
        labels.append(1)
    elif (data_all['labels'][i] == 0):
        print(data_all['labels'][i])
        for k in range(col):
            data_all['data'][i][:, k] = sklearn.preprocessing.scale(
                data_all['data'][i][:, k])
        datas.append(data_all['data'][i])
示例#5
0
from typing import List

from ML_funcs import unpickle
import matplotlib.pyplot as plt
import numpy as np
from numpy.core._multiarray_umath import ndarray

result_path = 'C:/Users/Administrator/Desktop/EEGDATA/result_svm/'
path = 'C:/Users/Administrator/Desktop/EEGDATA/all_txts'
dic_path = 'C:/Users/Administrator/Desktop/EEGDATA/all_pkl/svm_result_acc_r_boot_0702.pkl'

data = unpickle(dic_path)
print(data)
mean_acc = []

for i in range(35):
    mean_acc.append(np.mean(data[:,i]))
    print(np.mean(data[:,i]))

dummy = mean_acc[:]
sort_idx =[]
print(mean_acc)
for i in range(35):
    best_acc = max(dummy)
    for k in range(35):
        if dummy[k] == best_acc and best_acc > 0:
            sort_idx.append(k)
            dummy[k] = -1
            break
print(sort_idx)
#print(mean_acc)