示例#1
0
def efficient_rowdict2mat(rowdict):
    col_labels = value(rowdict).D
    M = Mat((set(keys(rowdict)), col_labels), {})
    for r in rowdict:
        for c in rowdict[r].f:
            M[r, c] = rowdict[r][c]
    return M
示例#2
0
def identity(D, one):
    """Given a set D and the field's one, returns the DxD identity matrix
    e.g.:

    >>> identity({0,1,2}, 1)
    Mat(({0, 1, 2}, {0, 1, 2}), {(0, 0): 1, (1, 1): 1, (2, 2): 1})
    """
    return Mat((D, D), {(d, d): one for d in D})
示例#3
0
def listlist2mat(L):
    """Given a list of lists of field elements, return a matrix whose ith row consists
    of the elements of the ith list.  The row-labels are {0...len(L)}, and the
    column-labels are {0...len(L[0])}
    >>> A=listlist2mat([[10,20,30,40],[50,60,70,80]])
    >>> print(A)
    <BLANKLINE>
            0  1  2  3
         -------------
     0  |  10 20 30 40
     1  |  50 60 70 80
    <BLANKLINE>
  """
    m, n = len(L), len(L[0])
    return Mat((set(range(m)), set(range(n))), {(r, c): L[r][c]
                                                for r in range(m)
                                                for c in range(n)})
示例#4
0
def rowdict2mat(rowdict):
    """
    Given a dictionary or list whose values are Vecs, returns the Mat having these
    Vecs as its rows.  This is the inverse of mat2rowdict.
    Assumes all the Vecs have the same label-set.
    Assumes row_dict is nonempty.
    If rowdict is a dictionary then its keys will be the row-labels of the Mat.
    If rowdict is a list then {0...len(rowdict)-1} will be the row-labels of the Mat.
    e.g.:

    >>> A = {0:Vec({0,1},{0:1,1:2}),1:Vec({0,1},{0:3,1:4})}
    >>> B = [Vec({0,1},{0:1,1:2}),Vec({0,1},{0:3,1:4})]
    >>> mat2rowdict(rowdict2mat(A)) == A
    True
    >>> rowdict2mat(A)
    Mat(({0, 1}, {0, 1}), {(0, 1): 2, (1, 0): 3, (0, 0): 1, (1, 1): 4})
    >>> rowdict2mat(A) == rowdict2mat(B)
    True
    """
    col_labels = value(rowdict).D
    return Mat((set(keys(rowdict)), col_labels), {(r, c): rowdict[r][c]
                                                  for r in keys(rowdict)
                                                  for c in col_labels})
示例#5
0
def coldict2mat(coldict):
    """
    Given a dictionary or list whose values are Vecs, returns the Mat having these
    Vecs as its columns.  This is the inverse of mat2coldict.
    Assumes all the Vecs have the same label-set.
    Assumes coldict is nonempty.
    If coldict is a dictionary then its keys will be the column-labels of the Mat.
    If coldict is a list then {0...len(coldict)-1} will be the column-labels of the Mat.
    e.g.:

    >>> A = {0:Vec({0,1},{0:1,1:2}),1:Vec({0,1},{0:3,1:4})}
    >>> B = [Vec({0,1},{0:1,1:2}),Vec({0,1},{0:3,1:4})]
    >>> mat2coldict(coldict2mat(A)) == A
    True
    >>> coldict2mat(A)
    Mat(({0, 1}, {0, 1}), {(0, 1): 3, (1, 0): 2, (0, 0): 1, (1, 1): 4})
    >>> coldict2mat(A) == coldict2mat(B)
    True
    """
    row_labels = value(coldict).D
    return Mat((row_labels, set(keys(coldict))), {(r, c): coldict[c][r]
                                                  for c in keys(coldict)
                                                  for r in row_labels})
示例#6
0
def submatrix(M, rows, cols):
    return Mat((M.D[0] & rows, M.D[1] & cols),
               {(r, c): val
                for (r, c), val in M.f.items() if r in rows and c in cols})
示例#7
0
topRight = make_equations(329, 597, 1, 0)
bottomLeft = make_equations(592, 157, 0, 1)
bottomRight = make_equations(580, 483, 1, 1)
w = Vec(D, {('y1', 'x1'): 1})
e = {0, 1, 2, 3, 4, 5, 6, 7, 8}
rowDict = {
    0: topLeft[0],
    1: topLeft[1],
    2: topRight[0],
    3: topRight[1],
    4: bottomLeft[0],
    5:bottomLeft[1],
    6: bottomRight[0], 
    7: bottomRight[1],
    8: w
    }

# print(rowDict)
# L1Matrix = rowdict2mat(rowDict)
# bVec = zero_vec(e)
# bVec[8] = 1
# print(L1Matrix.D[0] == bVec.D)
# print(bVec)
# solve(L1Matrix, bVec)
# print(solve) 
A = Mat(({'a','b'},{'A','B'}), {('a','A'):one, ('a','B'):one, ('b','B'):one})
b = Vec({'a','b'}, {'a':one})
x = solver.solve(A, b)

print(x)