示例#1
0
def spread_mean(stock1, stock2, i, table):
    if table.model_type.iloc[i] == 'model1':
        model = 'H2'
    elif table.model_type.iloc[i] == 'model2':
        model = 'H1*'
    elif table.model_type.iloc[i] == 'model3':
        model = 'H1'
    stock1 = stock1[i, :150]
    stock2 = stock2[i, :150]
    b1 = table.w1.iloc[i]
    b2 = table.w2.iloc[i]
    y = np.vstack([stock1, stock2]).T
    logy = np.log(y)
    # print(logy)
    lyc = logy.copy()
    p = order_select(logy, 5)
    #print('p:',p)
    _, _, para = para_vecm(logy, model, p)
    logy = np.mat(logy)
    y_1 = np.mat(logy[p:])
    dy = np.mat(np.diff(logy, axis=0))
    for j in range(len(stock1) - p - 1):
        if model == 'H1':
            if p != 1:
                delta = para[0] * para[1].T * y_1[j].T + para[2] * np.hstack(
                    [dy[j:(j + p - 1)].flatten(),
                     np.mat([1])]).T
            else:
                delta = para[0] * para[1].T * y_1[j].T + para[2] * np.mat([1])
        elif model == 'H1*':
            if p != 1:
                delta = para[0] * para[1].T * np.hstack([
                    y_1[j], np.mat([1])
                ]).T + para[2] * dy[j:(j + p - 1)].flatten().T
            else:
                delta = para[0] * para[1].T * np.hstack([y_1[j],
                                                         np.mat([1])]).T
        elif model == 'H2':
            if p != 1:
                delta = para[0] * para[1].T * y_1[j].T + para[2] * dy[j:(
                    j + p - 1)].flatten().T
            else:
                delta = para[0] * para[1].T * y_1[j].T
        else:
            print('Errrrror')
            break
        dy[j + p, :] = delta.T
        y_1[j + 1] = y_1[j] + delta.T
    b = np.mat([[b1], [b2]])
    spread = b.T * lyc[p:].T
    spread_m = np.array(b.T * y_1.T).flatten()
    return spread_m, spread
示例#2
0
def get_Estd(stock1, stock2, i, table, dy=True, D=16):
    if table.model_type.iloc[i] == 'model1':
        model = 'H2'
    elif table.model_type.iloc[i] == 'model2':
        model = 'H1*'
    elif table.model_type.iloc[i] == 'model3':
        model = 'H1'
    stock1 = stock1[i, :150]
    stock2 = stock2[i, :150]
    b1 = table.w1.iloc[i]
    b2 = table.w2.iloc[i]
    b = np.mat([[b1], [b2]])
    y = np.vstack([stock1, stock2]).T
    logy = np.log(y)  #np.log(y)
    p = order_select(logy, 5)
    u, A, _ = para_vecm(logy, model, p)
    constant = np.mat(A[:, 0])
    A = A[:, 1:]
    l = A.shape[1]
    extend = np.hstack([np.identity(l - 2), np.zeros([l - 2, 2])])
    newA = np.vstack([A, extend])
    if not dy:
        lagy = logy[p - 1:-1, :]
        for i in range(1, p):
            lagy = np.hstack([lagy, logy[p - 1 - i:-i - 1, :]])
        MatrixA = np.mat(A)
        MatrixLagy = np.mat(lagy)
        Estimate_logy = MatrixA * MatrixLagy.T + constant
        e = logy[p:, :].T - Estimate_logy
        var = e * e.T / e.shape[1]
    else:
        var = u * u.T / u.shape[1]
    NowCoef = np.mat(np.eye(len(newA)))
    Evar = var.copy()
    for i in range(149):
        NowCoef = newA * NowCoef
        Evar = Evar + NowCoef[:2, :2] * var * NowCoef[:2, :2].T
    Evar = b.T * Evar * b

    return np.sqrt(Evar)
def formation_table(Smin, inNum, costS, cost, os, cs, MaxV, OpenD, Min_cp,
                    Max_tp):
    LSmin = np.log(Smin)  #已捨棄前16分鐘與最後五分鐘的股價取log
    #LSmin = Smin
    maxcompanynu = Smin.shape[1]  #找出有多少檔
    ind = mt.Binal_comb(range(maxcompanynu))
    ind = np.hstack((ind, np.zeros([ind.shape[0], 7])))
    #ind.columns = [0:S1_inx,1:S2_inx,2:opt_q, 3:Johansen intercept, 4:Johansen slope, 5:std,6:Model,7:W1,8:W2]
    DailyNum = len(Smin)
    cy = np.zeros([DailyNum,
                   ind.shape[0]])  # cy為Naturn Log共整合序列,以Capital Weight構成
    cy_mean = np.zeros([DailyNum,
                        ind.shape[0]])  # cy_mean為共整合序列均值,以Capital Weight構成
    B = np.zeros([2, ind.shape[0]])  #B為共整合係數
    CapitW = np.zeros([2, ind.shape[0]])  #CW為資金權重Capital Weight
    #IntegerB = np.zeros([2,ind.shape[0]]) #IB為CW整數化後的共整合係數

    #start_time = time.time()
    for mi in range(ind.shape[0]):
        #for mi in range(1):
        rowS = LSmin.iloc[0:inNum, [int(ind[mi, 0]), int(ind[mi, 1])]]  #150分鐘
        rowLS = LSmin.iloc[:DailyNum, [int(ind[mi, 0]),
                                       int(ind[mi, 1])]]  #250分鐘
        #stock1 = Smin.iloc[inNum-1,[int(ind[mi,0])]]
        #stock2 = Smin.iloc[inNum-1,[int(ind[mi,1])]]
        ind[mi, 0:2] = rowS.columns.values
        rowAS = np.array(rowS)
        # 配適 VAR(P) 模型 ,並利用BIC選擇落後期數,max_p意味著會檢查2~max_p
        try:
            max_p = 5
            p = order_select(rowAS, max_p)
            #ADF TEST
            if p < 1:

                continue
            # adf test
            # portmanteau test
            model = VAR(rowAS)

            if model.fit(p).test_whiteness(nlags=5).pvalue < 0.05:

                continue

            # Normality test
            if model.fit(p).test_normality().pvalue < 0.05:

                continue

            opt_model = jci.JCI_AutoSelection(rowAS, p - 1)
            #如果有共整合,紀錄下Model與opt_q
            ind[mi, 2] = p - 1
            ind[mi, 6] = opt_model
            F_a, F_b, F_ct, F_ut, F_gam, ct, omega_hat = jci.JCItestpara_spilCt(
                rowAS, opt_model, p - 1)

            # ind[mi,9] = F_a
            # ind[mi,10] = F_b
            # ind[mi,11] = F_ct
            # ind[mi,12] = F_ut
            # ind[mi,13] = F_gam
            # ind[mi,14] = ct
            # ind[mi,15] = omega_hat

            Com_para = []
            Com_para.append(F_a)
            Com_para.append(F_b)
            Com_para.extend(F_ct)
            #把  arrary.shape(2,1) 的數字放進 shape(2,) 的Serires
            #取出共整合係數
            B[:, mi] = pd.DataFrame(F_b).stack()
            #將共整合係數標準化,此為資金權重Capital Weight
            CapitW[:, mi] = B[:, mi] / np.sum(np.absolute(B[:, mi]))
            ind[mi, 7] = CapitW[0, mi]
            ind[mi, 8] = CapitW[1, mi]
            '''
            #將資金權重,依股價轉為張數權重
            S1 = CapitW[0][mi]/float(stock1)
            S2 = CapitW[1][mi]/float(stock2)
            
            #將張數權重,做最簡整數比,要求範圍是最大張數+1
            optXY = mt.simp_frac(S1,S2,MaxV+1)
            
            #如果最簡整數比出現[ (MaxV+1) / 1 ] or [ 1 / (MaxV+1) ] 就剃除
            #張數權重整數化後,絕對值小於5的設1(通過),絕對值大於6的設0(沒通過)
            if abs(optXY[0]) <= MaxV  and abs(optXY[1]) <= MaxV:
                ind[mi,4] = 1
                IntegerB[:,mi] = optXY[:]
                ind[mi,7] = optXY[0]
                ind[mi,8] = optXY[1]
            
           '''
            #計算Spread的時間趨勢均值與標準差
            Johansen_intcept, Johansen_slope = jci.Johansen_mean(
                F_a, F_b, F_gam, F_ct, p - 1)
            Johansen_var_correct = jci.Johansen_std_correct(
                F_a, F_b, F_ut, F_gam, p - 1)
            Johansen_std = np.sqrt(Johansen_var_correct)
            ind[mi, 3] = Johansen_intcept
            ind[mi, 4] = Johansen_slope
            ind[mi, 5] = Johansen_std
            SStd = Johansen_std
            cy_mean[:, mi] = Johansen_intcept + Johansen_slope * np.linspace(
                0, 249, 250)
            #以資金權重建構Naturn Log共整合序列
            cy[:, mi] = pd.DataFrame(np.mat(rowLS) *
                                     np.mat(CapitW[:, mi]).T).stack()
            #拿共整合序列拿去檢定,ADF單根檢定回傳1代表無單根(定態),0代表有單根(非定態)
            #ind[mi,5] = mt.ADFtest_TR(cy[OpenD-1:inNum,mi], opt_p-1 , 0.05)
            #如果收斂點在Trading Period,設為0(沒通過、不交易),反之設為1
            #if converg_Point < inNum:
            #ind[mi,10] = converg_Point
            #Spend_time = time.time() - start_time
            '''
            #畫個圖確認一下
            print(ind[mi,0:2])
            import matplotlib.pyplot as plt
            plotx = [i for i in range(DailyNum)]
            CL = np.zeros((DailyNum,5))
            CL [:,2] = cy_mean[:,mi]
            CL [:,1] = cy_mean[:,mi]+SStd*os
            CL [:,0] = cy_mean[:,mi]+SStd*cs
            CL [:,3] = cy_mean[:,mi]-SStd*os
            CL [:,4] = cy_mean[:,mi]-SStd*cs
            plt.plot(plotx,cy[:,mi],plotx,CL)
            plt.show()
            '''
        except:
            continue
    dd = np.zeros([ind.shape[0], 1])
    test_Model = ind[:, 6] != 0
    dd = test_Model
    ind_select = ind[dd, :]  #排除沒有共整合關係的配對
    return ind_select
def daily_procces(Smin, inNum, costS, cost, os, cs, MaxV, OpenD, Min_cp,
                  Max_tp):
    '''
    #Debug 時使用的參數
    Smin = SPmin.iloc[DailyNum*di:DailyNum*(di+1),:].to_numpy()
    inNum,costS,cost,os,cs,MaxV,OpenD = indataNum,CostS,Cost,Os,Fs,MaxVolume,OpenDrop
    Min_cp, Max_tp = Min_c_p, Max_t_p
    '''
    LSmin = np.log(Smin)  #已捨棄前16分鐘與最後五分鐘的股價取log
    maxcompanynu = Smin.shape[1]  #找出有多少檔
    ind = mt.Binal_comb(range(maxcompanynu))
    ind = np.hstack((ind, np.zeros([ind.shape[0], 9])))
    #ind.columns = [0:S1_inx,1:S2_inx,2:opt_q, 3:modelH Check, 4:整數 Check, 5:ADF Check,6:Model,7:IB1張數,8:IB2,9:SStd,10:converg_point Check]
    DailyNum = len(Smin)
    cy = np.zeros([DailyNum,
                   ind.shape[0]])  # cy為Naturn Log共整合序列,以Capital Weight構成
    cy_mean = np.zeros([DailyNum,
                        ind.shape[0]])  # cy_mean為共整合序列均值,以Capital Weight構成
    B = np.zeros([2, ind.shape[0]])  #B為共整合係數
    CapitW = np.zeros([2, ind.shape[0]])  #CW為資金權重Capital Weight
    IntegerB = np.zeros([2, ind.shape[0]])  #IB為CW整數化後的共整合係數

    #start_time = time.time()
    for mi in range(ind.shape[0]):
        #for mi in range(1):
        rowS = LSmin.iloc[0:inNum, [int(ind[mi, 0]), int(ind[mi, 1])]]
        rowLS = LSmin.iloc[:DailyNum, [int(ind[mi, 0]), int(ind[mi, 1])]]
        stock1 = Smin.iloc[inNum - 1, [int(ind[mi, 0])]]
        stock2 = Smin.iloc[inNum - 1, [int(ind[mi, 1])]]
        ind[mi, 0:2] = rowS.columns.values
        rowAS = np.array(rowS)
        # 配適 VAR(P) 模型 ,並利用BIC選擇落後期數,max_p意味著會檢查2~max_p
        try:
            max_p = 5
            p = order_select(rowAS, max_p)
            opt_model = jci.JCI_AutoSelection(rowAS, p - 1)
            #如果有共整合,紀錄下Model與opt_q
            ind[mi, 2] = p - 1
            ind[mi, 6] = opt_model
            if opt_model == 4 or opt_model == 5:
                F_a, F_b, F_ct, F_ut, F_gam, ct, omega_hat = jci.JCItestpara_spilCt(
                    rowAS, opt_model, p - 1)
                Com_para = []
                Com_para.append(F_a)
                Com_para.append(F_b)
                Com_para.extend(F_ct)
                #把  arrary.shape(2,1) 的數字放進 shape(2,) 的Serires
                #取出共整合係數
                B[:, mi] = pd.DataFrame(F_b).stack()
                #將共整合係數標準化,此為資金權重Capital Weight
                CapitW[:, mi] = B[:, mi] / np.sum(np.absolute(B[:, mi]))

                #將資金權重,依股價轉為張數權重
                S1 = CapitW[0][mi] / float(stock1)
                S2 = CapitW[1][mi] / float(stock2)

                #將張數權重,做最簡整數比,要求範圍是最大張數+1
                optXY = mt.simp_frac(S1, S2, MaxV + 1)

                #如果最簡整數比出現[ (MaxV+1) / 1 ] or [ 1 / (MaxV+1) ] 就剃除
                #張數權重整數化後,絕對值小於5的設1(通過),絕對值大於6的設0(沒通過)
                if abs(optXY[0]) <= MaxV and abs(optXY[1]) <= MaxV:
                    ind[mi, 4] = 1
                    IntegerB[:, mi] = optXY[:]
                    ind[mi, 7] = optXY[0]
                    ind[mi, 8] = optXY[1]

                #計算Spread的時間趨勢均值與標準差
                Johansen_intcept, Johansen_slope = jci.Johansen_mean(
                    F_a, F_b, F_gam, F_ct, p - 1)
                Johansen_var_correct = jci.Johansen_std_correct(
                    F_a, F_b, F_ut, F_gam, p - 1)
                Johansen_std = np.sqrt(Johansen_var_correct)
                ind[mi, 9] = Johansen_std
                cy_mean[:,
                        mi] = Johansen_intcept + Johansen_slope * np.linspace(
                            0, 249, 250)
                #以資金權重建構Naturn Log共整合序列
                cy[:, mi] = pd.DataFrame(
                    np.mat(rowLS) * np.mat(CapitW[:, mi]).T).stack()
                #拿共整合序列拿去檢定,ADF單根檢定回傳1代表無單根(定態),0代表有單根(非定態)
                #ind[mi,5] = mt.ADFtest_TR(cy[OpenD-1:inNum,mi], opt_p-1 , 0.05)
                #如果收斂點在Trading Period,設為0(沒通過、不交易),反之設為1
                #if converg_Point < inNum:
                #ind[mi,10] = converg_Point
        #Spend_time = time.time() - start_time
        except:
            continue
    dd = np.zeros([ind.shape[0], 1])
    test_Inter = ind[:, 4] == 1
    #test_ADF = ind[:,5]==1
    test_Model = ind[:, 6] >= 4  #挑出model4&5交易
    #test_converg = ind[:,10]>0
    #dd = test_Inter & test_ADF & test_Model & test_converg
    dd = test_Inter & test_Model

    OMinx = ind[dd, :]
    cy = cy[:, dd]
    cy_mean = cy_mean[:, dd]
    IntegerB = IntegerB[:, dd]

    DailyResult = np.zeros((OMinx.shape[0], 17))

    DailyResult[:, 0:2] = OMinx[:, 0:2]
    DailyResult[:, 2:5] = OMinx[:, 6:9]
    DailyResult[:, 5] = OMinx[:, 10]
    #DailyResult=[S1,S2,model,SFx資金權重,SFy,Cconverg_point收斂點,...

    #DailyResult(:,6:11)
    # ...,總獲利,平倉獲利,停損獲利,換日強停獲利,換日強停虧損,...
    #DailyResult(:,11:17)
    # ...,開倉次數,平倉次數,停損次數,換日強停獲利次數,換日強停虧損次數,向上(1)/向下(-1)]

    for pi in range(OMinx.shape[0]):
        SStd = OMinx[pi, 9]  #標準差
        mean_slope = cy_mean[inNum, pi] - cy_mean[0, pi]
        #Con_Point = int(DailyResult[pi,5])
        smin = Smin[[str(int(OMinx[pi, 0])),
                     str(int(OMinx[pi, 1]))]][inNum:DailyNum]
        '''
        #畫個圖確認一下
        import matplotlib.pyplot as plt
        plotx = [i for i in range(DailyNum)]
        CL = np.zeros((DailyNum,5))
        CL [:,2] = cy_mean[:,pi]
        CL [:,1] = cy_mean[:,pi]+SStd*os
        CL [:,0] = cy_mean[:,pi]+SStd*cs
        CL [:,3] = cy_mean[:,pi]-SStd*os
        CL [:,4] = cy_mean[:,pi]-SStd*cs
        plt.plot(plotx,cy[:,pi],plotx,CL)
        
        '''
        if SStd * os <= costS:
            continue
        elif SStd * os > costS and mean_slope > 0:  #and Con_Point < Min_cp:
            print(
                mt.trade_up(cy[inNum:DailyNum, pi],
                            cy_mean[inNum:DailyNum, pi], np.array(smin),
                            IntegerB[:, pi], SStd, cost, os, cs, Max_tp))
            # DailyResult[pi, 6:11]=ProfitU
            # DailyResult[pi, 11:16]=CountU
            # DailyResult[pi, 16] = 1
        elif SStd * os > costS and mean_slope < 0:  # and Con_Point < Min_cp:
            print(
                mt.trade_down(cy[inNum:DailyNum, pi], cy_mean[inNum:DailyNum,
                                                              pi],
                              np.array(smin), IntegerB[:, pi], SStd, cost, os,
                              cs, Max_tp))
            # DailyResult[pi, 6:11]=ProfitD
            # DailyResult[pi, 11:16]=CountD
            # DailyResult[pi, 16] = -1

    return DailyResult
示例#5
0
def cointegration_weight(stock1, stock2):

    # 開啟matlab引擎
    #eng=matlab.engine.start_matlab()

    # 選擇適合的 VECM model,並且檢定 formation period 是否有結構性斷裂,並刪除該配對,其餘配對則回傳共整合係數。
    #rank = 1
    #t1 = int(len(min_price)*3/4)     # 一天的時間長度(偵測兩天中間是否有結構性斷裂)

    local_select_model = []
    local_weight = []
    local_name = []
    local_pval = []

    # stock1 = min_price.iloc[:,i]
    # stock2 = min_price.iloc[:,j]

    # stock1_name = min_price.columns.values[i]
    # stock2_name = min_price.columns.values[j]

    z = (np.vstack([stock1, stock2]).T)
    model = VAR(z)
    p = order_select(z, 5)
    #p = int(model.select_order(5).bic)

    # VAR 至少需落後1期
    if p < 1:

        return 0, 0

    # portmanteau test
    if model.fit(p).test_whiteness(nlags=5).pvalue < 0.05:

        return 0, 0

    # Normality test
    if model.fit(p).test_normality().pvalue < 0.05:

        return 0, 0

    #r1 = eng.rank_jci( matlab.double(z.tolist()) , 'H2' , (p-1) )
    #r2 = eng.rank_jci( matlab.double(z.tolist()) , 'H1*' , (p-1))
    #r3 = eng.rank_jci( matlab.double(z.tolist()) , 'H1' , (p-1) )

    r1 = rank(pd.DataFrame(z), 'H2', p)
    r2 = rank(pd.DataFrame(z), 'H1*', p)
    r3 = rank(pd.DataFrame(z), 'H1', p)
    #r4 = rank( pd.DataFrame(z) , 'H*' , p )

    if r3 > 0:  # 在 model 3 上有 rank

        if r2 > 0:  # 在 model 2 上有 rank

            if r1 > 0:  # select model 1 and model 2 and model 3

                #lambda_model2 = eng.eig_jci( matlab.double(z.tolist()) , 'H1*' , (p-1) , r2 )
                #lambda_model3 = eng.eig_jci( matlab.double(z.tolist()) , 'H1' , (p-1) , r2 )

                lambda_model2 = eig(pd.DataFrame(z), 'H1*', p, r2)
                lambda_model3 = eig(pd.DataFrame(z), 'H1', p, r2)

                test = np.log(
                    lambda_model2 / lambda_model3) * (len(stock1) - p)
                if test <= 0:
                    raise ValueError('test value error')
                if test > 3.8414:

                    #bp1 = chow_test( z , t1 , p , 'H1' , r3 )

                    #if bp1 == 0:

                    local_select_model.append('model3')
                    return weigh(pd.DataFrame(z), 'H1', p, r3)
                    #weight.append( eng.coin_jci( matlab.double(z.tolist()) , 'H1' , (p-1) , r3 ) )
                    # local_weight.append( weigh( pd.DataFrame(z) , 'H1' , p , r3 ) )

                    # local_name.append([stock1_name,stock2_name])

                    # local_pval.append( vecm_pvalue('model3', vecm( pd.DataFrame(z),'H1',p)[0][0] ) )

                else:

                    #lambda_model1 = eng.eig_jci( matlab.double(z.tolist()) , 'H2' , (p-1) , r1 )

                    lambda_model1 = eig(pd.DataFrame(z), 'H2', p, r1)

                    test = np.log(
                        lambda_model1 / lambda_model2) * (len(stock1) - p)

                    if test > 3.8414:

                        #bp1 = chow_test( z , t1 , p , 'H1*' , r2 )

                        #if bp1 == 0:

                        # local_select_model.append('model2')

                        #weight.append( eng.coin_jci( matlab.double(z.tolist()) , 'H1*' , (p-1) , r2 ) )
                        return weigh(pd.DataFrame(z), 'H1*', p, r2)
                        # local_weight.append( weigh( pd.DataFrame(z) , 'H1*' , p , r2 ) )

                        # local_name.append([stock1_name,stock2_name])

                        # local_pval.append( vecm_pvalue('model2',vecm(pd.DataFrame(z),'H1*',p)[0][1] ) )

                    else:

                        #bp1 = chow_test( z , t1 , p , 'H2' , r1 )

                        #if bp1 == 0:

                        # local_select_model.append('model1')

                        #weight.append( eng.coin_jci( matlab.double(z.tolist()) , 'H2' , (p-1) , r1 ) )
                        return weigh(pd.DataFrame(z), 'H2', p, r1)
                        # local_weight.append( weigh( pd.DataFrame(z) , 'H2' , p , r1 ) )

                        # local_name.append([stock1_name,stock2_name])

                        # local_pval.append( vecm_pvalue('model1',vecm(pd.DataFrame(z),'H2',p)[0][0] ) )

            else:  # select model 2 and model 3

                #lambda_model2 = eng.eig_jci( matlab.double(z.tolist()) , 'H1*' , (p-1) , r2 )
                #lambda_model3 = eng.eig_jci( matlab.double(z.tolist()) , 'H1' , (p-1) , r2 )

                lambda_model2 = eig(pd.DataFrame(z), 'H1*', p, r2)
                lambda_model3 = eig(pd.DataFrame(z), 'H1', p, r2)

                test = np.log(
                    lambda_model2 / lambda_model3) * (len(stock1) - p)

                if test <= 0:
                    raise ValueError('test value error')
                if test > 3.8414:

                    #bp1 = chow_test( z , t1 , p , 'H1' , r3 )

                    #if bp1 == 0:

                    # local_select_model.append('model3')

                    #weight.append( eng.coin_jci( matlab.double(z.tolist()) , 'H1' , (p-1) , r3 ) )
                    return weigh(pd.DataFrame(z), 'H1', p, r3)
                    # local_weight.append( weigh( pd.DataFrame(z) , 'H1' , p , r3 ) )

                    # local_name.append([stock1_name,stock2_name])

                    # local_pval.append( vecm_pvalue('model3',vecm(pd.DataFrame(z),'H1',p)[0][0] ) )

                else:

                    #bp1 = chow_test( z , t1 , p , 'H1*' , r2 )

                    #if bp1 == 0:

                    # local_select_model.append('model2')

                    #weight.append( eng.coin_jci( matlab.double(z.tolist()) , 'H1*' , (p-1) , r2 ) )
                    return weigh(pd.DataFrame(z), 'H1*', p, r2)
                    # local_weight.append( weigh( pd.DataFrame(z) , 'H1*' , p , r2 ) )

                    # local_name.append([stock1_name,stock2_name])

                    # local_pval.append( vecm_pvalue('model2',vecm(pd.DataFrame(z),'H1*',p)[0][1] ) )

        else:  # 只在 model 3 上有rank

            #bp1 = chow_test( z , t1 , p , 'H1' , r3 )

            #if bp1 == 0:

            # local_select_model.append('model3')

            #weight.append( eng.coin_jci( matlab.double(z.tolist()) , 'H1' , (p-1) , r3 ) )
            return weigh(pd.DataFrame(z), 'H1', p, r3)
            # local_weight.append( weigh( pd.DataFrame(z) , 'H1' , p , r3 ) )

            # local_name.append([stock1_name,stock2_name])

            # local_pval.append( vecm_pvalue('model3',vecm(pd.DataFrame(z),'H1',p)[0][0] ) )

    return 0, 0