def betameain(): studies, prefs = meta_studies(path="../config.json") indices = [[2, 5, 6], [1, 3, 4]] for study, idx in zip(studies, indices): print(idx) chnk_iterator = chunker.init(study, pickle=False) corr_chnk = client.map(operation.check_n_correct, chnk_iterator)
def add_main(): # returns 'study' object with metadata as attributes studies, prefs = meta_studies(path="../config.json") for study in studies: chnk_iterator = chunker.init(study, pickle=False) for chnk in chnk_iterator: corr_chnk = operation.check_n_correct(chnk) lift_chnk = operation.liftover(corr_chnk) ref_chnk = operation.reference(lift_chnk) operation.write_db(ref_chnk) db = redis.StrictRedis(db=8) print(db.dbsize())
def run(): config_path = "/home/sevvy/PycharmProjects/CardioDiscover/test_config.json" studies = reader.meta_studies(config_path) for study in studies: study = check_n_correct.init() # # check and correct the GWAS file # study = check_n_correct.init_check_correct(study) # # make iterator in liftover and 1000ref # study = liftover.iterator() # stuy = reference_check.iterator() # study = '' # #call the stuff
def dif_main(): # returns 'study' object with metadata as attributes studies, prefs = meta_studies(path="../config.json") for study in studies: chnk_iterator = chunker.init(study, pickle=False) corr_chnk = delayed(operation.check_n_correct)(chnk_iterator) lift_chnk = delayed(operation.liftover)(corr_chnk) ref_chnk = delayed(operation.reference)(lift_chnk) db_insert = delayed(operation.write_db)(ref_chnk) db_insert.compute() db = redis.StrictRedis(db=8) print(db.dbsize())
def main(): # returns 'study' object with metadata as attributes studies, prefs = meta_studies(path="../config.json") def study_tasker(study): chnk_iterator = client.submit(chunker.init, study, pickle=False) corr_chnk = client.map(operation.check_n_correct, chnk_iterator) lift_chnk = client.map(operation.liftover, corr_chnk) ref_chnk = client.map(operation.reference, lift_chnk) client.map(operation.write_db, ref_chnk) start = client.map(study_tasker, studies) db = redis.StrictRedis(db=8) print(db.dbsize())
def main(): # original doc containing the metadata meta_doc = read_meta(path="") # returns 'study' object with metadata as attributes files = meta_studies(path="") for this_study in files: # read the study file, find separator, create GWASin = reader.init_reader(this_study) # do something with headers, write to df or something classifier.init_classifier(GWASin) # additional meta data about study to perform update add_meta = checker.init_check_correct(GWASin, this_study) meta_doc = update_meta(meta_doc, add_meta) write_meta(meta_doc)
def alt_main(): studies, prefs = meta_studies(path="../config.json") study = studies[0] chnk_iterator = chunker.init(study, pickle=False) corr_chnk = client.map(operation.check_n_correct, chnk_iterator) lift_chnk = client.map(operation.liftover, corr_chnk) ref_chnk = client.map(operation.reference, lift_chnk) for future in as_completed(ref_chnk): print(future) chnk = future.result() db_submit = client.submit(operation.write_db, chnk) db = redis.StrictRedis(db=8) print(db.dbsize())
def an_main(): studies, prefs = meta_studies(path="../config.json") indices = [[2, 5, 6], [1, 3, 4]] for study, idx in zip(studies, indices): print(idx) chnk_iterator = chunker.init(study, pickle=False) corr_chnk = client.map(operation.check_n_correct, chnk_iterator) lift_chnk = client.map(operation.liftover, corr_chnk) ref_chnk = client.map(operation.reference, lift_chnk) for future in as_completed(ref_chnk): print(future) chnk = future.result() client.submit(operation.write_db, chnk) db = redis.StrictRedis(db=8) print(db.dbsize())