#!/usr/bin/env python import lcatr.schema import siteUtils import metUtils from MetrologyData import md_factory producer = 'SR-MET-05' testtype = 'FLATNESS' results = metUtils.aggregate_filerefs(producer, testtype) sensorData = md_factory.load('flatness.pickle') peak_valley_95 = sensorData.quantiles['0.975'] - sensorData.quantiles['0.025'] results.append(lcatr.schema.valid(lcatr.schema.get('sensor_flatness'), peak_valley_95=peak_valley_95)) results.append(siteUtils.packageVersions()) lcatr.schema.write_file(results) lcatr.schema.validate_file()
sensor_id = siteUtils.getUnitId() ccd_vendor = siteUtils.getCcdVendor() png_files = glob.glob('%(sensor_id)s_abs_height*.png'% locals()) results = [lcatr.schema.fileref.make(x) for x in png_files] txt_files = glob.glob('%(sensor_id)s_abs_height*.txt'% locals()) results.extend([lcatr.schema.fileref.make(x) for x in txt_files]) # # Extract numerical results from pickled MetrologyData object, if it exists. # pickle_file = 'abs_height.pickle' if os.path.isfile(pickle_file): ZNOM = dict(ITL=12998., e2v=13000.) sensorData = md_factory.load(pickle_file) dzdx, dzdy, z0 = sensorData.plane_functor.pars zmean = np.mean(sensorData.sensor.z) znom = ZNOM[ccd_vendor] znom_residual_025 = sensorData.quantiles['0.025'] znom_residual_975 = sensorData.quantiles['0.975'] results.append(lcatr.schema.valid(lcatr.schema.get('absolute_height'), dzdx=dzdx, dzdy=dzdy, z0=z0, zmean=zmean, znom=znom, znom_residual_025=znom_residual_025, znom_residual_975=znom_residual_975)) results.append(siteUtils.packageVersions()) lcatr.schema.write_file(results) lcatr.schema.validate_file()
# Add the QA plot to the results raft_id = siteUtils.getUnitId() qafile = glob.glob('*_qa_plot.png')[0] #print('qafile: %s' % qafile) #print('raft_id: %s' % raft_id) md = siteUtils.DataCatalogMetadata(CCD_MANU=siteUtils.getCcdVendor(), LSST_NUM=siteUtils.getUnitId(), PRODUCER=producer, ORIGIN=siteUtils.getSiteName(), TESTTYPE=testtype, TEST_CATEGORY='MET') results.extend([lcatr.schema.fileref.make(qafile, metadata=md(DATA_PRODUCT='QA_PLOT'))]) raftData = md_factory.load('flatness_ts5_delta.pickle') peak_valley_95 = raftData.quantiles['0.975'] - raftData.quantiles['0.025'] peak_valley_100 = raftData.quantiles['1.000'] - raftData.quantiles['0.000'] # Make strings out of the quantile information quantiles = raftData.quantiles quantile_levels = quantiles.keys() quantile_str = '' z_str = '' for key in sorted(quantile_levels): quantile_str += key + ', ' z_str += "%.2f" % quantiles[key] + ', ' quantile_str = quantile_str[0:len(quantile_str)-2] z_str = z_str[0:len(z_str)-2] results.append(lcatr.schema.valid(lcatr.schema.get('ts5_flatness_delta'),