示例#1
0
    def test(self):
        rows = torch.Tensor([0, 0, 1, 1]).int()
        cols = torch.Tensor([0, 1, 2, 3]).int()
        vals = torch.ones(4).double()
        size = [2, 4]
        mat = torch.rand(4, 3).double()
        mat.requires_grad_()
        spmm_fn = MinkowskiSPMMFunction()
        out = spmm_fn.apply(rows, cols, vals, size, mat)
        print(out)

        loss = out.sum()
        loss.backward()
        print(mat.grad)
        self.assertTrue(gradcheck(spmm_fn, (rows, cols, vals, size, mat)))

        rows = rows.cuda()
        cols = cols.cuda()
        vals = vals.cuda()
        mat = mat.cuda()
        mat.requires_grad_()
        out = spmm_fn.apply(rows, cols, vals, size, mat)
        print(out)

        loss = out.sum()
        loss.backward()
        print(mat.grad)
        self.assertTrue(gradcheck(spmm_fn, (rows, cols, vals, size, mat)))
示例#2
0
    def test_dtype(self):
        rows = torch.Tensor([0, 0, 1, 1]).float()
        cols = torch.Tensor([0, 1, 2, 3]).double()
        vals = torch.ones(4).double()
        size = [2, 4]
        mat = torch.rand(4, 3).double()
        mat.requires_grad_()
        spmm_fn = MinkowskiSPMMFunction()
        out = spmm_fn.apply(rows, cols, vals, size, mat)
        print(out)

        if not torch.cuda.is_available():
            return

        rows = torch.cuda.IntTensor([0, 0, 1, 1])
        cols = torch.cuda.IntTensor([0, 1, 2, 3])
        vals = torch.ones(4).double().to(0)
        size = [2, 4]
        mat = mat.to(0)
        mat.requires_grad_()
        out = spmm_fn.apply(rows, cols, vals, size, mat)
        print(out)