writer.add_image('Train.3.Diff', colorize(vutils.make_grid(torch.abs(output-depth).data, nrow=6, normalize=False)), epoch)
    del image
    del depth
    del output
    

traincsv=pd.read_csv('./content/data/diml_outdoor_train.csv')
traincsv = traincsv.values.tolist()
traincsv = shuffle(traincsv, random_state=2)

#display a sample set of image and depth image
depth_dataset = DepthDataset(traincsv=traincsv,root_dir='./content/')
fig = plt.figure()
len(depth_dataset)

model = Model().cpu()
if torch.cuda.device_count() > 1:
  print("Let's use", torch.cuda.device_count(), "GPUs!")
  # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
  model = nn.DataParallel(model)
#load trained model if needed
#model.load_state_dict(torch.load('/workspace/1.pth'))
print('Model created.')

epochs=50
lr=0.0001
batch_size=64

depth_dataset = DepthDataset(traincsv=traincsv, root_dir='./content/',
                transform=transforms.Compose([Augmentation(0.5),ToTensor()]))
train_loader=DataLoader(depth_dataset, batch_size, shuffle=True)
start_time = time.time()

depth_dataset = DepthDataset(root_dir=data,
                             transform=transforms.Compose([ToTensor()]))
train_loader = torch.utils.data.DataLoader(depth_dataset, batchSize)
dataiter = iter(train_loader)
images = dataiter.next()

print("\n Time taken to load Images: %s " % (time.time() - start_time))
print("\n Test Dataset Shape: {shape}".format(shape=np.shape(depth_dataset)))

# ### Importing the Model

from Mobile_model import Model

model = Model().cuda()
model = nn.DataParallel(model)

# Import the Pre-trained Model

model.load_state_dict(torch.load(pretrained_path))
print("\n Loaded MobileNet U-Net Weights successfully\n")

model.eval()

# ### Model Variables (state_dict)

# print("\n\nModel's state_dict:\n\n")
# for param_tensor in model.state_dict():
#     print(param_tensor, "\t", model.state_dict()[param_tensor].size())
示例#3
0
                        help='Image size of network input')
    parser.add_argument('--data_dir',
                        default='comarision_datasets\input',
                        type=str,
                        help='Data path')
    parser.add_argument(
        '--result_dir',
        default='demo_results',
        type=str,
        help='Directory for saving results, default: demo_results')
    parser.add_argument('--gpu_id',
                        default=0,
                        type=int,
                        help='GPU id, default:0')
    args = parser.parse_args()

    if not os.path.exists(args.result_dir):
        os.makedirs(args.result_dir)

    gpu_id = args.gpu_id
    torch.cuda.device(gpu_id)

    net = Model().cuda()
    net.load_state_dict(torch.load('weights_model.pth'))
    net.eval()

    print('Begin to test ...')
    with torch.no_grad():
        demo(net, args)
    print('Finished!')