def load_all(overwrite=False): load_all_models() filein = "{0}/known_simulations.json".format(_dir_path) with open(filein) as json_file: data = json.load(json_file) for name in data.keys(): print name data['model'] = get_model(data[model]) sim = Simulation(**data[name]) sim.add2known(overwrite=overwrite)
from ImgConst import * from LoadData import prepare_data, img_vec from Model import get_model, train_model, save_model from SimImgIdx import get_sorted_similarity_idx from ImgFeatures import save_img_feature, load_img_features try: x_train = prepare_data() autoencoder = get_model() autoencoder = train_model(x_train,autoencoder) model_path = save_model(autoencoder) autoencoder_save = load_model(model_path) feature_path = save_img_feature(autoencoder_save, x_train) feature_val = load_img_features(feature_path) img_test_file = "f0006_09.png" img_test = img_vec(img_test_file) img_test = img_test.astype('float32') / 255. img_test = np.reshape(img_test, (len(img_test),IMG_WIDTH, IMG_HEIGHT, IMG_COLOR)) similarity_sorted = get_sorted_similarity_idx(autoencoder_save, img_test, encoded_images=feature_val, loss=LOSS_2) similar_idx = similarity_sorted[0] print(similar_idx) # print(similarity_sorted) # f = plt.figure(figsize=(20, 4)) # f.add_subplot(1, 2, 1) # plt.imshow(x_train[1].reshape(28, 28)) # f.add_subplot(1,2, 2)
# tokenize all content tokenizer = Tokenizer() tokenizer.fit_on_texts(training_dataset['content']) tokenizer.fit_on_texts(test_dataset['content']) num_encoder_tokens = len(tokenizer.word_index) + 1 # fetch encoder input data and decoder input data encoder_input_data = get_encoded_padded_content(tokenizer, training_dataset['content'], max_encoder_seq_length) decoder_input_data, decoder_target_data = get_decoder_inputs(training_dataset["labels"].values, num_decoder_tokens) # print(encoder_input_data.shape) # exit(-1) # print(encoder_input_data[0]) # print(decoder_input_data[0]) model, encoder_model, decoder_model = get_model(num_encoder_tokens, num_decoder_tokens, tokenizer, sys.argv[1], encoder_input_data, decoder_input_data, decoder_target_data) encoder_input_test_data = get_encoded_padded_content(tokenizer, test_dataset['content'], max_encoder_seq_length) decoder_input_test_data, decoder_target_test_data = get_decoder_inputs(test_dataset["labels"].values, num_decoder_tokens) model_output = [] def decode_sequence(seq_input): # Encode the input as state vectors. states_value = encoder_model.predict(seq_input) # Generate empty target sequence of length 1. target_seq = np.zeros((1, 1, num_decoder_tokens))
from FGSM import FGSM from BIM import BIM from visualize import visualise # In[2]: # %matplotlib inline # %matplotlib qt # In[3]: device = torch.device('cpu') # In[4]: model = get_model(device) # loads a pretrained vgg11 model model.eval() # In[5]: def imshow(img, wnid, title=None): img = img.cpu().detach().numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) img = img * std + mean # img = np.clip(img,0,1) plt.imshow(img) # title = getClassOfId(wnid)
from Model import get_model from keras import callbacks from keras.optimizers import Adam from keras.losses import sparse_categorical_crossentropy from data_generator import data_generator model_systole = get_model(n_ch=32) adam = Adam(lr=0.0001) model_systole.compile(optimizer=adam, loss=sparse_categorical_crossentropy) model_systole.summary() # --- Define data and training ----# path_train = 'Training_arrays/systole/' path_val = 'Validation_arrays/systole' pathModel = 'SystoleModel/' pathLog = 'SystoleLog/' batchsize = 4 n_epochs, n_iter_train, n_iter_val = 400, int(491 / batchsize), int(194 / batchsize) data_train = data_generator(path_train, batchsize=batchsize, mode='Systole', shuffle=True, train=True) data_val = data_generator(path_val, batchsize=batchsize, mode='Systole', shuffle=False, train=False)