示例#1
0
 def __init__(self, parent = None,name = None,modal = 0,fl = 0):
     """Set up the dialogue.
     """
     Source.__init__(self,parent,name,modal,fl)
     self.setCaption(self.tr("Edit Source"))
     viewList= Control.Global.getListSelected()
     so= viewList[0]
     self.fromSourceToWidget(so) # Make a copy and fill in fields
     self.wNext.setEnabled(0)
     self.wPrev.setEnabled(0)
     self.wNext.hide()
     self.wPrev.hide()
示例#2
0
 def __init__(self,parent = None,name = None,modal = 0,fl = 0):
     """Set up the dialogue.
     """
     Source.__init__(self,parent,name,modal,fl)
     self.setCaption(self.tr("New Source"))
     self.wNum.setText(self._sourceL.getNewRef()) # get next ref number
     self.wNext.setEnabled(0)
     self.wPrev.setEnabled(0)
     self.wNext.hide()
     self.wPrev.hide()
     self._cuven= None
     self.connect(self.wRule,SIGNAL("activated(int)"),
                  self.slotRuleActivated)
示例#3
0
    def calculateNewSources(self):
        self.newSources = {}
        for s in self.currentSources:
            #print("Replacing: " + str(s))
            sizeForS = len(self.currentSources.get(s).destinations)
            eDis = 0
            newDis = 0
            xCoord = 0.0
            yCoord = 0.0
            xCoordw = 0.0
            yCoordw = 0.0
            demandSum = 0
            for ds in self.currentSources.get(s).destinations:
                demandSum += ds.demand
                eDis += self.distanceMap[self.currentSources[s].destinationId][
                    ds.id]
                xCoordw += float(ds.demand) * ds.x
                yCoordw += float(ds.demand) * ds.y
                xCoord += ds.x
                yCoord += ds.y

            if (xCoord != 0.0 and sizeForS != 0):
                xCoordw = (xCoordw / demandSum)
                yCoordw = (yCoordw / demandSum)
                xCoord = xCoord / sizeForS
                yCoord = yCoord / sizeForS
                #print("weighted =>" + str(xCoordw) + ", " + str(yCoordw))
                #print("Non weighted =>" + str(xCoord) + ", " + str(yCoord))
                cd = self.findClosestDestination(xCoordw, yCoordw)
            for ds in self.currentSources.get(s).destinations:
                newDis += self.distanceMap[cd.id][ds.id]
            if newDis < eDis:
                self.newSources[s] = Source.Source(cd.x, cd.y, cd.id, s)
            else:
                self.newSources[s] = self.currentSources[s]
示例#4
0
    def calculateNewSourcesActual(self):
        self.newSources = {}
        for s in self.currentSources:
            # print("Replacing: " + str(s))
            sizeForS = len(self.currentSources.get(s).destinations)

            xCoord = 0.0
            yCoord = 0.0
            xCoordw = 0.0
            yCoordw = 0.0
            demandSum = 0
            for ds in self.currentSources.get(s).destinations:
                demandSum += ds.demand

                xCoordw += float(ds.demand) * ds.x
                yCoordw += float(ds.demand) * ds.y
                xCoord += ds.x
                yCoord += ds.y

            if (xCoord != 0.0 and sizeForS != 0):
                xCoordw = (xCoordw / demandSum)
                yCoordw = (yCoordw / demandSum)
                xCoord = xCoord / sizeForS
                yCoord = yCoord / sizeForS
                # print("weighted =>" + str(xCoordw) + ", " + str(yCoordw))
                # print("Non weighted =>" + str(xCoord) + ", " + str(yCoord))

            self.newSources[s] = Source.Source(xCoordw, yCoordw, -1, s)
示例#5
0
 def __init__(self, parent = None,name = None,modal = 0,fl = 0):
     """Set up the dialogue. The source object to delete is stored
     in the global listSelected.
     """
     Source.__init__(self,parent,name,modal,fl)
     self.setCaption(self.tr("Delete Source"))
     self._viewList= Control.Global.getListSelected()
     so= self._viewList[0]
     self.fromSourceToWidget(so)
     # set up buttons
     self.wSave.setText(self.tr('Delete'))
     self.wClear.setEnabled(0)
     self.wSave.setEnabled(1)
     self.wRound.setEnabled(0)
     self.wResc.setEnabled(0)
     self.wPrev.setEnabled(0)
     self.wNext.setEnabled(0)
     self.wPrev.hide()
     self.wNext.hide()
示例#6
0
 def __init__(self, parent = None,name = None,modal = 0,fl = 0):
     """Set up the dialogue. A list of selected source objects
     are stored in the global listSelected tuple.
     """
     Source.__init__(self,parent,name,modal,fl)
     self.setCaption(self.tr("View Source"))
     self._viewList= Control.Global.getListSelected()
     self._pos= len(self._viewList) -1 # Show the last source 
     self.fromSourceToWidget(self._viewList[self._pos])
     #Disable several buttons
     self.wClear.setEnabled(0)
     self.wSave.setEnabled(0)
     self.wRound.setEnabled(0)
     self.wNext.setEnabled(0)
     self.wResc.setEnabled(0)
     self.numGrep= None#Model.Grep.Grep()
     if len(self._viewList)==1:
         self.wPrev.setEnabled(0)
         self.wNext.setEnabled(0)
示例#7
0
    def calculateAverageDistanceCost(self):
        currentKeys = [
            6, 16, 17, 21, 27, 28, 35, 46, 57, 60, 64, 67, 75, 80, 86, 93, 98,
            109, 112, 119, 120, 124, 141, 146, 147, 152, 154, 156, 159, 162,
            165, 172
        ]
        #currentKeys = [6,16,17,21, 33,36,39,46,51, 60, 67,78,85,93,100,103,108,111,118,122,123,125,137,142,145,150,152,155,159,162,169,171]
        i = 1
        self.currentSources = {}
        for k in currentKeys:
            dest = self.destinations.get(k)
            #self.tabooList[k] = dest
            source = Source.Source(dest.x, dest.y, dest.id, i)
            self.currentSources[i] = source
            i += 1
        self.doCurrentAssignment()
        self.calculateCurrentCost()
        sourceAverage = 0
        demandSum = 0
        disAverage = 0
        weightedAverage = 0
        for d in self.destinations:
            dest = self.destinations.get(d)
            demandSum += dest.demand
        for d in self.destinations:
            dest = self.destinations.get(d)
            dest.weight = float(dest.demand) / demandSum
        ncheck = 0
        #print(len(self.currentSources))

        for s in self.currentSources:
            source = self.currentSources.get(s)
            #print("Number of destinations for this source")
            #print(len(source.destinations))
            ncheck += len(source.destinations)
            for dest in source.destinations:
                source.totalDemand += dest.demand
                weightedAverage += (self.distanceMap[source.destinationId][
                    dest.id]) * dest.weight
                disAverage += self.distanceMap[source.destinationId][dest.id]
            for dest in source.destinations:
                sourceAverage += (
                    self.distanceMap[source.destinationId][dest.id] *
                    dest.demand) / source.totalDemand
        n = len(self.destinations)
        print("n = " + str(n))
        print("ncheck = " + str(ncheck))
        print("Distance total " + str(disAverage))
        print("Weighted Distance total " + str(weightedAverage))
        print("Source Weighted Distance total " + str(sourceAverage))
        print("*******\n\n")
        print("Distance total " + str(disAverage / n))
        print("Weighted Distance total " + str(weightedAverage / n))
        print("Source Weighted Distance total " + str(sourceAverage / self.k))
示例#8
0
文件: EM.py 项目: harsha2412/P-Med
    def createParts(self, merge=True):
        #print("creating parts " + str(merge))
        self.parts = {}
        for d in self.destinations:
            dest = self.destinations.get(d)
            key = int(dest.label)
            if self.parts.get(key) is None:
                destArray = []
                destArray.append(dest)
                self.parts[key] = Part(destArray, key)
            else:
                self.parts.get(key).destinations.append(dest)
        print("Total Parts " + str(len(self.parts)))
        assignedFacilities = 0
        maxDemandPointPart = None
        maxdemandPoints = -1

        for k in self.parts:
            part = self.parts.get(k)
            part.k = self.getNumberOfFacilitiesForThisPart(part.destinations)
            assignedFacilities += part.k
            if part.totalDemandPoints > maxdemandPoints:
                maxDemandPointPart = part
                maxdemandPoints = part.totalDemandPoints
        if assignedFacilities < params['k']:
            remaining = params['k'] - assignedFacilities
            maxDemandPointPart.k += remaining
            maxDemandPointPart.valid = False
            self.parts[maxDemandPointPart.id] = maxDemandPointPart

        for p in self.parts:
            #print(part.k)
            part = self.parts.get(p)
            part.populateCentroid()
            self.currentSources[p] = Source.Source(part.x, part.y, -1, p)
            ## bring me back
            if merge:
                part.homogeneous = self.areDemandPointsRandom(
                    part.destinations)

        if merge:
            self.mergePartsByDeletingSources()

        self.k = len(self.parts)
        self.sourceDao.k = self.k
        self.partToDestinationMap = {}

        for p in self.parts:
            for d in self.parts.get(p).destinations:
                self.partToDestinationMap[d.id] = p
示例#9
0
文件: MIP.py 项目: harsha2412/P-Med
	def pmedian(self):
		model = Model()
		print("Problem scale " + str(self.n) + ", " + str(self.p))
		alpha = [[model.add_var(name='alpha', var_type=BINARY) for j in range(self.n)] for i in range(self.n)]
		x = [model.add_var(name='isFacility', var_type=BINARY) for i in range(self.n)]

		# constraint 1
		for i in range(self.n):
			model += xsum(alpha[i][j] for j in range(self.n) ) == 1

		# constraint 2
		for i in range(self.n):
			for j in range(self.n):
				model += alpha[i][j] - x[j] <= 0

		#constraint 3
		model += xsum(x[j] for j in range(self.n)) == self.p

		# objective function
		model.objective = minimize(xsum(self.demandWeights[i]*self.dij[i][j]*alpha[i][j] for j in range(self.n) for i in range(self.n)))
		status = model.optimize(max_seconds=360000)
		print("solution status " + str(status) )
		xj = []
		alphaij = []
		for v in model.vars:
			if v.name == "isFacility":
				xj.append(v.x)


		iIndex = 0
		sId = 1
		for k in xj:
			if int(k)==1:
				destId = self.indexToId[iIndex]
				dest = self.destinations.get(destId)
				newsource = Source.Source(dest.x, dest.y, dest.id,sId )
				self.currentSources[sId] = newsource
				sId+=1
				#print("iIndex "+ str(iIndex) + ", corresponding destination " + str(self.indexToId[iIndex]))
			iIndex +=1
		self.doCurrentAssignment()
		cost = self.calculateCurrentCost()
		print("cost (obj value) " + str(cost))
		return cost
示例#10
0
    def kMeansStuff(self):
        # Do kmeans stuff
        self.iterations = 0
        printFlag = False
        if len(self.currentSources) == 0:
            #print("Random selection")
            currentKeys = random.sample(list(self.destinations), self.k)
            i = 1
            self.currentSources = {}
            for k in currentKeys:
                dest = self.destinations.get(k)
                source = Source.Source(dest.x, dest.y, dest.id, i)
                #source.id = i
                i += 1
                self.currentSources[source.id] = source
        else:
            printFlag = True
            print("I already have sources")
        #print(" Initial Sources ")
        #self.printCurrentSources()
        terminationCondition = False
        itc = 0
        self.doCurrentAssignment()
        while not terminationCondition:
            if printFlag:
                print("itr " + str(itc) + "cost " +
                      str(self.calculateCurrentCost()))
            #print("Iteration # "  + str(itc))
            self.calculateNewSources()

            terminationCondition = self.checkForTermination()
            #print(" termination Condition " + str(terminationCondition))
            if not terminationCondition:
                #print(" Not terminating ")
                self.currentSources = dict(self.newSources)
                self.newSources.clear()
                self.doCurrentAssignment()

            itc += 1
示例#11
0
    def myopicAlgo(self):
        currentNumberOfSources = 1
        while currentNumberOfSources <= self.k:
            print("Adding source #"+ str(currentNumberOfSources))
            addingCost = sys.maxsize
            for did in self.destinations:
                dest = self.destinations.get(did)
                if self.checkCurrentSources(did): # destination not already a source
                    newSource = Source.Source(dest.x, dest.y, dest.id,currentNumberOfSources)
                    self.tempSources[currentNumberOfSources] = newSource
                    self.doCurrentAssignment(self.tempSources)
                    thisSourceCost = self.calculateCurrentCost()
                    if(addingCost > thisSourceCost):
                        #print("Candidate "+ str(did) + " cost = " + str(thisSourceCost))
                        addingCost = thisSourceCost
                        self.currentSources = dict(self.tempSources)

            currentNumberOfSources +=1
            self.tempSources = dict(self.currentSources)
        self.doCurrentAssignment(self.currentSources)
        print('Done with this shittt')
        return self.calculateCurrentCost()
示例#12
0
 def getNewSource(self, source):
     xCoord = 0.0
     yCoord = 0.0
     size = len(source.destinations)
     xCoordw = 0.0
     yCoordw = 0.0
     demandSum = 0
     sizeForS = len(source.destinations)
     for ds in source.destinations:
         demandSum += ds.demand
     for dest in source.destinations:
         xCoord += dest.x
         yCoord += dest.y
         xCoordw += float(dest.demand) * dest.x
         yCoordw += float(dest.demand) * dest.y
     if (xCoord != 0.0 and sizeForS != 0):
         xCoordw = (xCoordw / demandSum)
         yCoordw = (yCoordw / demandSum)
     newMedian = self.findClosestDestination(xCoordw, yCoordw)
     if newMedian.id != source.destinationId:
         source = Source.Source(newMedian.x, newMedian.y, newMedian.id, source.id)
     return source
示例#13
0
    def getPartsBasedOnValidity(self):
        p = 2
        pm = None
        validityCondition = False
        start = timeit.default_timer()
        while not validityCondition:
            print(
                "****************************************************************************************************\n\n"
            )
            print("p = " + str(p))
            pm = PartitioningManager.PartitioningManager(p, self.distType)
            pm.k = p
            pm.runMaranzanaForDecomposition()
            pm.maranzana.createPartitionsFromSources()
            validityCondition = not pm.maranzana.checkValidityOfParts()
            p = p + 1

        p = p - 1
        print("p selected for decomposition " + str(p))

        maranzanaRuns = runs
        mrz = 0
        minCost = sys.maxsize
        minSourceIds = []
        while mrz < maranzanaRuns:
            print("########################## mrz Run " + str(mrz) +
                  "##################################################")
            pm = PartitioningManager.PartitioningManager(p, self.distType)
            pm.k = p
            validityCondition = False
            validCounter = 0
            while not validityCondition:
                print("p = " + str(p) + "validity counter " +
                      str(validCounter))
                pm = PartitioningManager.PartitioningManager(p, self.distType)
                pm.k = p
                pm.runMaranzanaAfterPIsKnown()
                pm.maranzana.createPartitionsFromSources()
                validityCondition = not pm.maranzana.checkValidityOfParts()
                validCounter += 1
            #pm.maranzana.mergeParts()
            pm.maranzana.mergePartsByDeletingSources()
            #pm.maranzana.sourceDao.saveParts(pm.maranzana.currentDestinationToSourceMapping,pm.maranzana.destinations, len(pm.maranzana.parts))
            #exit(0)
            sourceIds = []
            for par in pm.maranzana.parts:
                print("part " + str(par))
                part = pm.maranzana.parts.get(par)
                pm.gria = GRIA.GRIA(part.k, self.distType)
                print(" My k " + str(part.k))
                print(" My destinations " + str(len(part.destinations)))
                for d in part.destinations:
                    pm.gria.destinations[d.id] = d
                pm.runGria()
                for s in pm.gria.minSources:
                    src = pm.gria.minSources.get(s)
                    sourceIds.append(src.destinationId)
            pm.maranzana = Maranzana.Maranzana(params['k'], self.distType)
            pm.maranzana.getAllDestinations()
            pm.maranzana.buildDistanceMap()
            i = 1
            print("Length of sourceids " + str(len(sourceIds)))

            for s in sourceIds:
                dest = pm.maranzana.destinations.get(s)
                source = Source.Source(dest.x, dest.y, dest.id, i)
                pm.maranzana.currentSources[i] = source
                i += 1
            pm.maranzana.doCurrentAssignment()
            prevCost = pm.maranzana.calculateCurrentCost()
            print("final cost before global maranzana " + str(prevCost))
            pm.runMaranzana()
            pm.maranzana.doCurrentAssignment()
            afterCost = pm.maranzana.calculateCurrentCost()
            print("cost after global maranzana " + str(afterCost))
            if afterCost < prevCost:
                print("Global Maranzana helped")
                sourceIds = []
                for s in pm.maranzana.currentSources:
                    src = pm.maranzana.minSources.get(s)
                    sourceIds.append(src.destinationId)
            cost = prevCost
            if afterCost < prevCost:
                cost = afterCost

            if minCost > cost:
                minCost = cost
                minSourceIds = {}
                minSourceIds = sourceIds.copy()

            mrz += 1

        print("Final solution cost " + str(minCost) + " Number of sources " +
              str(len(minSourceIds)))
        i = 1
        sourceIds = []
        for s in minSourceIds:
            #dest = pm.maranzana.destinations.get(s)
            #source = Source.Source(dest.x, dest.y, dest.id, i)
            sourceIds.append(s)

        ## post gria
        pm.gria = GRIA.GRIA(params['k'], self.distType)
        pm.gria.getAllDestinations()
        pm.gria.buildDistanceMap()
        i = 1

        for s in sourceIds:
            dest = pm.gria.destinations.get(s)
            source = Source.Source(dest.x, dest.y, dest.id, i)
            pm.gria.currentSources[i] = source
            i += 1
        pm.gria.doCurrentAssignment(pm.gria.currentSources)
        cost = pm.gria.calculateCurrentCost()
        print("final cost before gria " + str(cost))
        stop = timeit.default_timer()
        diff = stop - start
        print("time before gria local = " + str(diff / 3600) + " hours")
        pm.runGriaGlobalOnly()
        pm.gria.doCurrentAssignment(pm.gria.currentSources)
        stop = timeit.default_timer()
        diff = stop - start
        print("time = " + str(diff / 3600) + " hours")
        cost = pm.gria.calculateCurrentCost()
        print("final cost after local gria  " + str(cost))
        pm.gria.saveDestToSourceMapping()

        stop = timeit.default_timer()
        diff = stop - start
        print("time = " + str(diff / 3600) + " hours")
示例#14
0
    def calculateAverageDistanceCost(self):
        #currentKeys = [6,13,16,21,28, 32 ,36, 41, 51,63, 68 ,75,78,80,86,87, 93, 103,107,111, 117,122, 123,135,137,144,145,150,152,154,165,168  ] ## from sitation exchange
        currentKeys = [6,16,17,21, 33,36,39,46,51, 60, 67,78,85,93,100,103,108,111,118,122,123,125,137,142,145,150,152,155,159,162,169,171]
        currentKeys = [6, 16, 17, 21, 27, 28,  34, 46, 51, 57, 60,64,  67, 75, 80, 86, 93, 98, 108, 111, 118, 123, 140,  144, 145, 150, 152, 154, 159, 162, 165, 172] ## Lagrangioan
        #currentKeys = []
        i = 1
        self.currentSources = {}
        for k in currentKeys:
            dest = self.destinations.get(k)
            # self.tabooList[k] = dest
            source = Source.Source(dest.x, dest.y, dest.id, i)
            self.currentSources[i] = source
            i += 1
        self.doCurrentAssignment(self.currentSources)
        self.calculateCurrentCost()
        sourceAverage = 0
        demandSum = 0
        disAverage = 0
        weightedAverage = 0
        for d in self.destinations:
            dest = self.destinations.get(d)
            demandSum += dest.demand
        for d in self.destinations:
            dest = self.destinations.get(d)
            dest.weight = float(dest.demand) / demandSum
        ncheck = 0
        # print(len(self.currentSources))
        tdp = 0
        for s in self.currentSources:
            thisSource =0

            source = self.currentSources.get(s)
            print('\n*************\n source ' + str(source.destinationId))
            # print("Number of destinations for this source")
            # print(len(source.destinations))
            ncheck += len(source.destinations)
            for dest in source.destinations:
                source.totalDemand += dest.demand
                weightedAverage += (self.distanceMap[source.destinationId][dest.id]) * dest.weight
                disAverage += self.distanceMap[source.destinationId][dest.id]
            for dest in source.destinations:
                dp = round(self.distanceMap[source.destinationId][dest.id]) * dest.demand
                #print(str(dest.id) + ": dist --> " + str(round(self.distanceMap[source.destinationId][dest.id])) + "demamd "  + str(dest.demand) + " prod " + str(dp))
                tdp += dp

                thisSource += (round(self.distanceMap[source.destinationId][dest.id]) * dest.demand)
            print("Total demand for this source " + str(source.totalDemand))

            print("Cost for this source " + str(thisSource))
            thisSource = round(thisSource/source.totalDemand,2)
            print("Average for this source " + str(thisSource))
            sourceAverage += (thisSource*(source.totalDemand/demandSum))
        n = len(self.destinations)
        print("int cost " + str(tdp))

        #print("n = " + str(n))
        #print("ncheck = " + str(ncheck))
        print("*******\n\n")
        #print("Distance total " + str(disAverage / n))
        #print("Weighted Distance total " + str(weightedAverage / n))
        print("Source Weighted Distance total " + str(sourceAverage ))
        print("26 to 32 theirrs " + str(round(self.distanceMap[26][32])))
        print(str(self.destinations.get(26).x) + ", "+ str(self.destinations.get(26).y))
        print(str(self.destinations.get(42).x) + ", " + str(self.destinations.get(42).y))
        print("26 to 42 mine " + str(round(self.distanceMap[26][42])))
        print("26 to 43 mine " + str(round(self.distanceMap[26][43])))
        print("Gorttta  make sense")


        for d in self.currentDestinationToSourceMapping:
            print("Node " + str(self.destinations.get(d).id) + "(" + str(self.destinations.get(d).x) + ","+ str(self.destinations.get(d).y) + ")" + "--> "+ str(self.currentDestinationToSourceMapping[d]) + ", cost =" + str(round(self.distanceMap[d][self.currentDestinationToSourceMapping[d]]) *self.destinations.get(d).demand))
示例#15
0
def GetCallups( fname, soundalike=True, useUciId=True, useLicense=True, callbackfunc=None, callbackupdate=None ):

	if callbackupdate: callbackupdate( _('Reading spreadsheet...') )
	reader = GetExcelReader( fname )
	
	sheet_names = [name for name in reader.sheet_names()]
	
	registration_sheet_count = sum( 1 for sheet in sheet_names if sheet == RegistrationSheet )
	if registration_sheet_count == 0:
		raise ValueError( u'{}: "{}"'.format('Spreadsheet is missing sheet', RegistrationSheet ) )
	if registration_sheet_count > 1:
		raise ValueError( u'{}: "{}"'.format('Spreadsheet must have exactly one sheet named', RegistrationSheet ) )
	
	if callbackupdate: callbackupdate( u'{}: {}'.format(_('Reading'), RegistrationSheet) )
	
	reader = GetExcelReader( fname )
	
	registration = Source( fname, RegistrationSheet, False )
	registrationErrors = registration.read( reader )
	
	if callbackfunc:callbackfunc( [registration], [registrationErrors] )
		
	sources = []
	errors = []
	for sheet in sheet_names:
		if sheet == RegistrationSheet:
			continue
		if callbackfunc: callbackfunc( sources + [registration], errors + [registrationErrors] )
		if callbackupdate: callbackupdate( u'{}: {}'.format(_('Reading'), sheet) )
		source = Source( fname, sheet, soundalike=soundalike, useUciId=useUciId, useLicense=useLicense )
		errs = source.read( reader )
		sources.append( source )
		errors.append( errs )
		
	# Add a random sequence as a final sort order.
	registration.randomize_positions()
	
	sources.append( registration )
	errors.append( registrationErrors )
	
	if callbackfunc: callbackfunc( sources, errors )
	
	for reg in registration.results:
		reg.result_vector = [source.find(reg) for source in sources]
	
	callup_order = sorted(
		registration.results,
		key = lambda reg: tuple(r.get_sort_key() for r in reg.result_vector)
	)

	# Randomize riders with no criteria.
	for i_random, reg in enumerate(callup_order):
		if all( r.get_status() == r.NoMatch for r in reg.result_vector[:-1] ):
			cu2 = callup_order[i_random:]
			random.seed()
			random.shuffle(cu2)
			callup_order = callup_order[:i_random] + cu2
			break
		
	callup_results = []
	registration_headers = registration.get_ordered_fields()
	
	# Also add the team code if there is one.
	if not 'team_code' in registration_headers:
		for iSource, source in enumerate(sources):
			if 'team_code' in source.get_ordered_fields():
				try:
					i_team = registration_headers.index('team')
					registration_headers = tuple(
						list(registration_headers[:i_team+1]) +
						['team_code'] +
						list(registration_headers[i_team+1:])
					)
				except ValueError:
					registration_headers = tuple( list(registration_headers) + ['team_code'] )
					
				for reg in callup_order:
					try:
						reg.team_code = reg.result_vector[iSource].matches[0].team_code
					except:
						pass
				break
	
	callup_headers = list(registration_headers) + [source.sheet_name for source in sources[:-1]]
	
	for reg in callup_order:
		row = [getattr(reg, f, u'') for f in registration_headers]
		row.extend( reg.result_vector[:-1] )
		callup_results.append( row )
	
	return registration_headers, callup_headers, callup_results, sources, errors
示例#16
0
def GetCallups(fname,
               soundalike=True,
               useUciId=True,
               useLicense=True,
               callbackfunc=None,
               callbackupdate=None):

    if callbackupdate: callbackupdate(_('Reading spreadsheet...'))
    reader = GetExcelReader(fname)

    sheet_names = [name for name in reader.sheet_names()]

    registration_sheet_count = sum(1 for sheet in sheet_names
                                   if sheet == RegistrationSheet)
    if registration_sheet_count == 0:
        raise ValueError(u'{}: "{}"'.format('Spreadsheet is missing sheet',
                                            RegistrationSheet))
    if registration_sheet_count > 1:
        raise ValueError(u'{}: "{}"'.format(
            'Spreadsheet must have exactly one sheet named',
            RegistrationSheet))

    if callbackupdate:
        callbackupdate(u'{}: {}'.format(_('Reading'), RegistrationSheet))

    reader = GetExcelReader(fname)

    registration = Source(fname, RegistrationSheet, False)
    registrationErrors = registration.read(reader)

    if callbackfunc: callbackfunc([registration], [registrationErrors])

    sources = []
    errors = []
    for sheet in sheet_names:
        if sheet == RegistrationSheet:
            continue
        if callbackfunc:
            callbackfunc(sources + [registration],
                         errors + [registrationErrors])
        if callbackupdate:
            callbackupdate(u'{}: {}'.format(_('Reading'), sheet))
        source = Source(fname,
                        sheet,
                        soundalike=soundalike,
                        useUciId=useUciId,
                        useLicense=useLicense)
        errs = source.read(reader)
        sources.append(source)
        errors.append(errs)

    # Add a random sequence as a final sort order.
    registration.randomize_positions()

    sources.append(registration)
    errors.append(registrationErrors)

    if callbackfunc: callbackfunc(sources, errors)

    for reg in registration.results:
        reg.result_vector = [source.find(reg) for source in sources]

    callup_order = sorted(registration.results,
                          key=lambda reg: tuple(r.get_sort_key()
                                                for r in reg.result_vector))

    # Randomize riders with no criteria.
    for i_random, reg in enumerate(callup_order):
        if all(r.get_status() == r.NoMatch for r in reg.result_vector[:-1]):
            cu2 = callup_order[i_random:]
            random.seed()
            random.shuffle(cu2)
            callup_order = callup_order[:i_random] + cu2
            break

    callup_results = []
    registration_headers = registration.get_ordered_fields()

    # Also add the team code if there is one.
    if not 'team_code' in registration_headers:
        for iSource, source in enumerate(sources):
            if 'team_code' in source.get_ordered_fields():
                try:
                    i_team = registration_headers.index('team')
                    registration_headers = tuple(
                        list(registration_headers[:i_team + 1]) +
                        ['team_code'] +
                        list(registration_headers[i_team + 1:]))
                except ValueError:
                    registration_headers = tuple(
                        list(registration_headers) + ['team_code'])

                for reg in callup_order:
                    try:
                        reg.team_code = reg.result_vector[iSource].matches[
                            0].team_code
                    except:
                        pass
                break

    callup_headers = list(registration_headers) + [
        source.sheet_name for source in sources[:-1]
    ]

    for reg in callup_order:
        row = [getattr(reg, f, u'') for f in registration_headers]
        row.extend(reg.result_vector[:-1])
        callup_results.append(row)

    return registration_headers, callup_headers, callup_results, sources, errors
示例#17
0
    def useEMClusters(self):
        finalData = []
        #fileName = "n_" + str(params['blockgroups']) + "_" +  self.distType+"_k_"+str(params['k'])+"_merge_mip_fi"+".csv"
        fileName = self.distType + "_k_" + str(
            params['k']) + "_merge_mip_fi_nonparallel" + ".csv"
        clusterFileName = "n_" + str(
            params['blockgroups']) + "_" + self.distType + "_k_" + str(
                params['k']) + "_indexes.csv"
        p = 2
        scores = {}
        ps = []
        selectedPs = []
        selectedDistancePs = []
        ins = 1

        pm = None
        cnt = 5
        clusterIndexes = []
        while cnt <= 5:
            start = timeit.default_timer()
            print(" trial " + str(cnt))
            logging.info(" trial " + str(cnt))
            while ins <= params['selectionRuns']:
                row = [ins]
                print(ins)

                #clusterIndexes.append(i)
                pm = PartitioningManager.PartitioningManager(p, self.distType)
                pm.em.getAllDestinations()
                while p <= params['maxP']:
                    pm.em.k = p
                    scores[p] = {}
                    ps.append(p)

                    sc = pm.em.createGmmClusters()
                    scores[p] = sc
                    p += 1
                results = pm.evaluateP(scores)
                selectedPs.append(results['densityEstimates'])
                selectedDistancePs.append(results['clustering'])
                p = 2
                ins += 1
            ins = 1
            print(selectedPs)

            medianP = int(statistics.median(selectedPs))
            medianPCluster = int(statistics.median(selectedDistancePs))
            medianPCluster = min(medianPCluster, medianP, 10)
            medianPCluster_org = medianPCluster
            print("winner for distance " + str(medianP))
            print("winner " + str(medianP))
            #exit(0)
            j = 0
            minCost = sys.maxsize
            minSourceIds = []

            minCost = sys.maxsize
            minSources = []

            dests = {}
            pm = PartitioningManager.PartitioningManager(
                medianP, self.distType)
            pm.em.getAllDestinations()
            dests = copy.deepcopy(pm.em.destinations)
            ltime = 0
            gtime = 0
            gcost = 0
            gtime = 0
            brakFlag = False
            while (j < params['instances']):
                print(
                    "******************** whole instance " + str(j) +
                    " *********************************************************\n\n"
                )
                logging.info(
                    "******************** whole instance " + str(j) +
                    " *********************************************************\n\n"
                )
                pm = PartitioningManager.PartitioningManager(
                    medianP, self.distType)
                pm.em.getAllDestinations()
                #dests = copy.deepcopy(pm.em.destinations)
                pm.em.createGmmClusters(True)
                pm.em.createParts(True)  # Make it true for distance analysis
                medianP = len(pm.em.parts)
                print("Number of em current sources == " +
                      str(len(pm.em.currentSources)))
                if len(pm.em.currentSources) == 0:
                    exit(0)
                    pm.k = medianPCluster
                    pm.em.k = medianPCluster
                    pm.em.createGmmClusters(True)  ## plot flag is true
                    pm.em.createParts(False)  # Dont merge

                #pm.em.sourceDao.savePartBoundaries(pm.em.partToDestinationMap, "nmp_silhouette")
                j += 1
                sourceIds = pm.assignPartsToProcessesForMIP(pm.em.parts)
                pm = PartitioningManager.PartitioningManager(
                    params['k'], self.distType)
                # try multiple instances with this p
                pm.fi = FI_Parallel.FastInterchange(params['k'], self.distType)
                i = 1
                pm.fi.destinations = copy.deepcopy(dests)
                if len(sourceIds) != params['k']:
                    logging.info("Not sure ehst hsppened selected only" +
                                 str(len(sourceIds)) + " sources")
                    brakFlag = True
                    continue
                for s in sourceIds:
                    dest = pm.fi.destinations.get(s)
                    source = Source.Source(dest.x, dest.y, dest.id, i)
                    pm.fi.currentSources[i] = source
                    i += 1
                #pm.fi
                #pm.fi.doCurrentAssignment(pm.gria.currentSources)
                pm.fi.doInitialAssignment()
                cost = pm.fi.calculateCurrentCost()
                if cost < minCost:
                    minCost = cost
                    minSources = sourceIds
                stop = timeit.default_timer()
                gtime = (stop - start) / 3600
                gcost = minCost
                print("time and cost after gmm " + str(gcost) + ", " +
                      str(gtime))
                logging.info("time and cost after gmm " + str(gcost) + ", " +
                             str(gtime))
                print("Cost for this instance " + str(cost))
                logging.info("Cost for this instance " + str(cost))
                print("Divinding by distance into " + str(medianPCluster))
                logging.info("Divinding by distance into " +
                             str(medianPCluster))
                disData = []
                medianPCluster_org = medianPCluster
                prevCost = gcost
                disCost = 0
                while medianPCluster >= 1 and disCost != prevCost:
                    print("*********medianPCluster  = " + str(medianPCluster) +
                          "\n")
                    logging.info("*********medianPCluster  = " +
                                 str(medianPCluster) + "\n")
                    prevCost = disCost
                    pm.em.k = medianPCluster
                    pm.em.destinations = {}
                    for s, src in pm.fi.currentSources.items():
                        pm.em.currentSources[s] = pm.fi.currentSources[s]
                    pm.em.clusterSources()
                    sourceIds = pm.createAndRunFIInstances()
                    pm = PartitioningManager.PartitioningManager(
                        params['k'], self.distType)
                    # try multiple instances with this p
                    pm.fi = FI_Parallel.FastInterchange(
                        params['k'], self.distType)
                    pm.fi.destinations = copy.deepcopy(dests)
                    i = 1
                    for s in sourceIds:
                        dest = pm.fi.destinations.get(s)
                        source = Source.Source(dest.x, dest.y, dest.id, i)
                        pm.fi.currentSources[i] = source
                        i += 1
                    pm.fi.doInitialAssignment()
                    disCost = pm.fi.calculateCurrentCost()
                    lcost = disCost
                    stop = timeit.default_timer()
                    ltime = (stop - start) / 3600
                    disData.append([medianPCluster, disCost, ltime])
                    print("Cost for this instance fpr" + str(medianPCluster) +
                          "after distance division = " + str(disCost) +
                          "time = " + str(ltime))
                    logging.info("Cost for this instance fpr" +
                                 str(medianPCluster) +
                                 "after distance division = " + str(disCost) +
                                 "time = " + str(ltime))
                    medianPCluster -= 1
                logging.info("I got here")
                self.saveCostData(
                    self.distType + str(params['k']) + "_trial" + str(cnt) +
                    "_distanceClusters.csv", disData)

            if brakFlag:
                continue
            if medianPCluster > 1:
                print("time and cost after distance " + str(disCost) + ", " +
                      str(ltime))
                print("Num of srcs " + str(len(minSources)))
                pm.fi.fastInterchange(parallelize=False)
                stop = timeit.default_timer()
                diff = stop - start
                print("final time = " + str(diff / 3600) + " hours")
                tame = diff / 3600
                cost = pm.fi.calculateCurrentCost()
                print("final cost after FI " + str(cost))
                name = "merge_fi_mip"  # or
            else:
                tame = ltime
                cost = disCost
            logging.info("appending data")
            #name = "noMerge_Distance"
            #pm.fi.saveDestToSourceMapping(cnt, name)
            #3 "Number of parts, final cost, final time, time after gmm, cost after gmm"
            finalData.append([
                medianP, medianPCluster_org, cost, tame, ltime, lcost, gtime,
                gcost
            ])
            #finalData.append([medianP, cost, tame,ltame,lcost, pm.gria.localSwapCount, pm.gria.globalSwapCount, pm.gria.iterations  ])
            cnt += 1

        #path = "sc2020/"
        self.saveCostData(fileName, finalData)
示例#18
0
    def completeTB(self):
        currentKeys = random.sample(list(self.destinations), self.k)
        i = 1
        self.currentSources = {}
        for k in currentKeys:
            dest = self.destinations.get(k)
            self.tabooList[k] = dest
            source = Source.Source(dest.x, dest.y, dest.id, i)
            i += 1
            self.currentSources[source.id] = source
        #print(" Initial Sources ")
        #self.printCurrentSources()
        complementKeys = []
        for d in self.destinations:
            if d not in currentKeys:
                complementKeys.append(d)

        self.doCurrentAssignment()
        self.current_r_value = self.calculateCurrentCost()
        terminationCondition = False
        iterations = 0
        while terminationCondition == False and iterations < self.maxIterations:
            print("iteration " + str(iterations))
            currentSourcesBackUp = dict(self.currentSources)
            v1_sources = dict(self.currentSources)
            r_min_b = self.current_r_value
            bWinner = {}
            for comp in complementKeys:
                if self.tabooList.get(comp) is None:
                    dest_b = self.destinations.get(comp)
                    vertex_k = -1
                    delta_min = sys.maxsize
                    for vertex in v1_sources:
                        vj = v1_sources.get(vertex)
                        self.currentSources.update({
                            vertex:
                            Source.Source(dest_b.x, dest_b.y, dest_b.id,
                                          vertex)
                        })
                        self.doCurrentAssignment()
                        delta_bj = self.calculateCurrentCost(
                        ) - self.current_r_value
                        self.currentSources = dict(currentSourcesBackUp)
                        if delta_bj < 0 and delta_bj < delta_min:
                            delta_min = delta_bj
                            vertex_k = vertex
                    if vertex_k != -1:
                        toReplace = self.currentSources[vertex_k]
                        self.currentSources.update({
                            vertex_k:
                            Source.Source(dest_b.x, dest_b.y, dest_b.id,
                                          vertex)
                        })
                        self.doCurrentAssignment()
                        if self.calculateCurrentCost() < r_min_b:
                            r_min_b = self.calculateCurrentCost()
                            bWinner = dict(self.currentSources)
                        self.currentSources.update({vertex_k: toReplace})
                        self.doCurrentAssignment()

            if r_min_b < self.current_r_value:
                print("r current defeated !!!")
                print("r_current " + str(self.current_r_value) + " r_min_b " +
                      str(r_min_b))
                self.currentSources = dict(bWinner)
                self.current_r_value = r_min_b
                currentKeys = []
                for s in self.currentSources:
                    currentKeys.append(
                        self.currentSources.get(s).destinationId)
                    self.tabooList.update({
                        self.currentSources.get(s).destinationId:
                        self.destinations.get(
                            self.currentSources.get(s).destinationId)
                    })
                complementKeys = []
                for d in self.destinations:
                    if d not in currentKeys:
                        complementKeys.append(d)
                iterations += 1
            else:
                self.doCurrentAssignment()
                terminationCondition = True
                print(" Ending Program==>  No improvement possible ")
示例#19
0
    def fastInterchange(self, parallelize=False):
        self.iterations = 0
        if len(self.currentSources) == 0:
            print("random sources in fi")
            currentKeys = random.sample(list(self.destinations), self.k)
            i = 1
            self.currentSources = {}
            for k in currentKeys:
                dest = self.destinations.get(k)
                self.tabooList[k] = dest
                source = Source.Source(dest.x, dest.y, dest.id, i)
                i += 1
                self.currentSources[source.id] = source
        currentKeys = []
        for s in self.currentSources:
            currentKeys.append(self.currentSources[s].destinationId)

        self.doInitialAssignment()  ## optimized step in the
        self.initializeSecondClosestSource()
        fopt = self.calculateCostUpdated()
        print("Initial cost " + str(fopt))
        terminationCondition = False
        complementKeys = []
        for d in self.destinations:
            if d not in currentKeys:
                complementKeys.append(d)
        while not terminationCondition:
            fopt = self.calculateCostUpdated()
            #print("\n~~~~~~~~~~~~~~Iteration: " + str(self.iterations))
            wmin = sys.maxsize
            goin_min = -1
            gout_min = -1
            for goin in complementKeys:
                if parallelize:
                    res = self.myMoveEvalParallel(goin)
                else:
                    res = self.myMoveEval(goin)
                if wmin > res['w']:
                    wmin = res['w']
                    #if parallelize:
                    #print("I found a reduced wmin" + str(wmin))
                    goin_min = goin
                    gout_min = res['goOut']
            #print("################################\n wmin = " + str(wmin))
            self.iterations += 1
            if wmin >= 0:
                print("Extermination!!")
                #self.doCurrentAssignment()
                fCost = self.calculateCostUpdated()
                print("final cost = " + str(fCost))
                #exit(0)

                terminationCondition = True

            else:
                fopt = fopt + wmin
                #print("\n swap change " +  str(gout_min) + " to " + str(goin_min) + "\n")
                sourceIdToUpdate = self.destIdToSourceId[gout_min]
                #print("Updating source id " + str(sourceIdToUpdate) + " to " + str(goin_min))
                self.currentSources[sourceIdToUpdate] = Source.Source(
                    self.destinations.get(goin_min).x,
                    self.destinations.get(goin_min).y, goin_min,
                    sourceIdToUpdate)
                if not parallelize:
                    self.updateClosestAndSecondClostest(goin_min, gout_min)
                else:
                    #self.updateClosestAndSecondClostest(goin_min, gout_min)
                    self.updateClosestAndSecondClostestParallel(
                        goin_min, gout_min)

                #self.doCurrentAssignment()

                cost = self.calculateCostUpdated()

                self.destIdToSourceId = {}
                for s in self.currentSources:
                    source = self.currentSources.get(s)
                    self.destIdToSourceId[source.destinationId] = s
                ind = 0
                for key in complementKeys:
                    if key == goin_min:
                        complementKeys[ind] = gout_min
                        break
                    ind += 1
def MakeExampleExcel( include_uci_points=True, include_national_points=True, include_previous_result=True ):
	Year = datetime.date.today().year
	YearAdjust = Year - 2017
	
	fname = os.path.join(Utils.getImageFolder(), 'IndividualRanking.xlsx')
	reader = GetExcelReader( fname )
	uci_points = Source( fname, 'Individual' )
	uci_points.read( reader )
	for r in uci_points.results:
		r.age += YearAdjust
		r.license = random_license()

	uci_sample = random.sample( uci_points.results, 20 )
	
	common_first_names = u'Léopold Grégoire Aurélien Rémi Léandre Thibault Kylian Nathan Lucas Enzo Léo Louis Hugo Gabriel Ethan Mathis Jules Raphaël Arthur Théo Noah Timeo Matheo Clément Maxime Yanis Maël'.split()
	common_last_names = u'Tisserand Lavergne Guignard Parmentier Evrard Leclerc Martin Bernard Dubois Petit Durand Leroy Moreau Simon Laurent Lefevre Roux Fournier Dupont'.split()
	
	other_sample = []
	for i in range(20):
		other_sample.append( Result(
				first_name=common_first_names[i%len(common_first_names)],
				last_name=common_last_names[i%len(common_last_names)],
				uci_id=random_uci_id(),
				license=random_license(),
			)
		)
		
	registration = list(uci_sample) + other_sample
	
	bibs = list(range(100,200))
	random.shuffle( bibs )
	
	for i, r in enumerate(registration):
		r.bib = bibs[i]
	
	fname_excel = os.path.join( Utils.getHomeDir(), 'CS_Test_Input.xlsx' )
	
	wb = xlsxwriter.Workbook( fname_excel )
	ws = wb.add_worksheet('Registration')
	fit_sheet = FitSheetWrapper( ws )
	
	fields = ['bib', 'first_name', 'last_name', 'uci_id', 'license']
	for c, field in enumerate(fields):
		fit_sheet.write( 0, c, make_title(field) )
	for r, result in enumerate(registration):
		for c, field in enumerate(fields):
			fit_sheet.write( r+1, c, getattr(result, field) )
	
	if include_uci_points:
		ws = wb.add_worksheet('Individual')
		fit_sheet = FitSheetWrapper( ws )
		for c, header in enumerate(['Rank', 'UCI ID', 'Name', 'Team Code', 'Age', 'Points']):
			fit_sheet.write( 0, c, header )
		for r, result in enumerate(uci_points.results):
			row = r + 1
			fit_sheet.write( row, 0, u'{}'.format(row) )
			fit_sheet.write( row, 1, result.uci_id if result.uci_id else u'' )
			fit_sheet.write( row, 2, u'{} {}'.format(result.last_name.upper(), result.first_name) )
			fit_sheet.write( row, 3, result.team_code if result.team_code else u'' )
			fit_sheet.write( row, 4, result.age )
			fit_sheet.write( row, 5, result.points )

	eligible_for_points = other_sample + [rr for rr in uci_points.results if rr.nation_code == 'FRA']

	if include_national_points:
		ws = wb.add_worksheet('National Points')
		fit_sheet = FitSheetWrapper( ws )
		for c, header in enumerate(['First Name', 'Last Name', 'License', 'Points']):
			fit_sheet.write( 0, c, header )
		
		for r, result in enumerate(random.sample(eligible_for_points, min(len(eligible_for_points),35))):
			row = r + 1
			fit_sheet.write( row, 0, result.first_name )
			fit_sheet.write( row, 1, result.last_name )
			fit_sheet.write( row, 2, result.license )
			fit_sheet.write( row, 3, random.randint(1, 200) )
	
	if include_previous_result:
		ws = wb.add_worksheet( '{} Result'.format(Year-1) )
		fit_sheet = FitSheetWrapper( ws )
		for c, header in enumerate(['Pos', 'First Name', 'Last Name', 'UCI ID', 'License']):
			fit_sheet.write( 0, c, header )
		for r, result in enumerate(random.sample(eligible_for_points, min(len(eligible_for_points),35))):
			row = r + 1
			fit_sheet.write( row, 0, row )
			fit_sheet.write( row, 1, result.first_name )
			fit_sheet.write( row, 2, result.last_name )
			fit_sheet.write( row, 3, result.uci_id )
			fit_sheet.write( row, 4, result.license )

	wb.close()
	
	return fname_excel