def conv_block(x, stage, branch, nb_filter, dropout_rate=None, weight_decay=1e-4): '''Apply BatchNorm, Relu, bottleneck 1x1 Conv2D, 3x3 Conv2D, and option dropout # Arguments x: input tensor stage: index for dense block branch: layer index within each dense block nb_filter: number of filters dropout_rate: dropout rate weight_decay: weight decay factor ''' eps = 1.1e-5 conv_name_base = 'conv' + str(stage) + '_' + str(branch) relu_name_base = 'relu' + str(stage) + '_' + str(branch) # 1x1 Convolution (Bottleneck layer) inter_channel = nb_filter * 4 x = BatchNormalization(epsilon=eps, axis=concat_axis, name=conv_name_base+'_x1_bn')(x) x = Scale(axis=concat_axis, name=conv_name_base+'_x1_scale')(x) x = Activation('relu', name=relu_name_base+'_x1')(x) x = Convolution2D(inter_channel, 1, 1, name=conv_name_base+'_x1', bias=False)(x) if dropout_rate: x = Dropout(dropout_rate)(x) # 3x3 Convolution x = BatchNormalization(epsilon=eps, axis=concat_axis, name=conv_name_base+'_x2_bn')(x) x = Scale(axis=concat_axis, name=conv_name_base+'_x2_scale')(x) x = Activation('relu', name=relu_name_base+'_x2')(x) x = ZeroPadding2D((1, 1), name=conv_name_base+'_x2_zeropadding')(x) x = Convolution2D(nb_filter, 3, 3, name=conv_name_base+'_x2', bias=False)(x) if dropout_rate: x = Dropout(dropout_rate)(x) return x
def identity_block(input_tensor, kernel_size, filters, stage, block): '''The identity_block is the block that has no conv layer at shortcut # Arguments input_tensor: input tensor kernel_size: defualt 3, the kernel size of middle conv layer at main path filters: list of integers, the nb_filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names ''' eps = 1.1e-5 nb_filter1, nb_filter2, nb_filter3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' scale_name_base = 'scale' + str(stage) + block + '_branch' x = Convolution2D(nb_filter1, 1, 1, name=conv_name_base + '2a', bias=False)(input_tensor) x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2a')(x) x = Scale(axis=bn_axis, name=scale_name_base + '2a')(x) x = Activation('relu', name=conv_name_base + '2a_relu')(x) x = ZeroPadding2D((1, 1), name=conv_name_base + '2b_zeropadding')(x) x = Convolution2D(nb_filter2, kernel_size, kernel_size, name=conv_name_base + '2b', bias=False)(x) x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2b')(x) x = Scale(axis=bn_axis, name=scale_name_base + '2b')(x) x = Activation('relu', name=conv_name_base + '2b_relu')(x) x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c', bias=False)(x) x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2c')(x) x = Scale(axis=bn_axis, name=scale_name_base + '2c')(x) x = merge([x, input_tensor], mode='sum', name='res' + str(stage) + block) x = Activation('relu', name='res' + str(stage) + block + '_relu')(x) return x
def transition_block(x, stage, nb_filter, compression=1.0, dropout_rate=None, weight_decay=1E-4): ''' Apply BatchNorm, 1x1 Convolution, averagePooling, optional compression, dropout # Arguments x: input tensor stage: index for dense block nb_filter: number of filters compression: calculated as 1 - reduction. Reduces the number of feature maps in the transition block. dropout_rate: dropout rate weight_decay: weight decay factor ''' eps = 1.1e-5 conv_name_base = 'conv' + str(stage) + '_blk' relu_name_base = 'relu' + str(stage) + '_blk' pool_name_base = 'pool' + str(stage) x = BatchNormalization(epsilon=eps, axis=concat_axis, name=conv_name_base+'_bn')(x) x = Scale(axis=concat_axis, name=conv_name_base+'_scale')(x) x = Activation('relu', name=relu_name_base)(x) x = Convolution2D(int(nb_filter * compression), 1, 1, name=conv_name_base, bias=False)(x) if dropout_rate: x = Dropout(dropout_rate)(x) x = AveragePooling2D((2, 2), strides=(2, 2), name=pool_name_base)(x) return x
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)): '''conv_block is the block that has a conv layer at shortcut # Arguments input_tensor: input tensor kernel_size: defualt 3, the kernel size of middle conv layer at main path filters: list of integers, the nb_filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names Note that from stage 3, the first conv layer at main path is with subsample=(2,2) And the shortcut should have subsample=(2,2) as well ''' eps = 1.1e-5 nb_filter1, nb_filter2, nb_filter3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' scale_name_base = 'scale' + str(stage) + block + '_branch' x = Convolution2D(nb_filter1, 1, 1, subsample=strides, name=conv_name_base + '2a', bias=False)(input_tensor) x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2a')(x) x = Scale(axis=bn_axis, name=scale_name_base + '2a')(x) x = Activation('relu', name=conv_name_base + '2a_relu')(x) x = ZeroPadding2D((1, 1), name=conv_name_base + '2b_zeropadding')(x) x = Convolution2D(nb_filter2, kernel_size, kernel_size, name=conv_name_base + '2b', bias=False)(x) x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2b')(x) x = Scale(axis=bn_axis, name=scale_name_base + '2b')(x) x = Activation('relu', name=conv_name_base + '2b_relu')(x) x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c', bias=False)(x) x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2c')(x) x = Scale(axis=bn_axis, name=scale_name_base + '2c')(x) shortcut = Convolution2D(nb_filter3, 1, 1, subsample=strides, name=conv_name_base + '1', bias=False)(input_tensor) shortcut = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '1')(shortcut) shortcut = Scale(axis=bn_axis, name=scale_name_base + '1')(shortcut) x = merge([x, shortcut], mode='sum', name='res' + str(stage) + block) x = Activation('relu', name='res' + str(stage) + block + '_relu')(x) return x
def resnet152_model(img_rows, img_cols, color_type=1, num_classes=None): """ Resnet 152 Model for Keras Model Schema and layer naming follow that of the original Caffe implementation https://github.com/KaimingHe/deep-residual-networks ImageNet Pretrained Weights Theano: https://drive.google.com/file/d/0Byy2AcGyEVxfZHhUT3lWVWxRN28/view?usp=sharing TensorFlow: https://drive.google.com/file/d/0Byy2AcGyEVxfeXExMzNNOHpEODg/view?usp=sharing Parameters: img_rows, img_cols - resolution of inputs channel - 1 for grayscale, 3 for color num_classes - number of class labels for our classification task """ eps = 1.1e-5 # Handle Dimension Ordering for different backends global bn_axis if K.image_dim_ordering() == 'tf': bn_axis = 3 img_input = Input(shape=(img_rows, img_cols, color_type), name='data') else: bn_axis = 1 img_input = Input(shape=(color_type, img_rows, img_cols), name='data') x = ZeroPadding2D((3, 3), name='conv1_zeropadding')(img_input) x = Convolution2D(64, 7, 7, subsample=(2, 2), name='conv1', bias=False)(x) x = BatchNormalization(epsilon=eps, axis=bn_axis, name='bn_conv1')(x) x = Scale(axis=bn_axis, name='scale_conv1')(x) x = Activation('relu', name='conv1_relu')(x) x = MaxPooling2D((3, 3), strides=(2, 2), name='pool1')(x) x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') for i in range(1, 8): x = identity_block(x, 3, [128, 128, 512], stage=3, block='b' + str(i)) x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') for i in range(1, 36): x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b' + str(i)) x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') x_fc = AveragePooling2D((7, 7), name='avg_pool')(x) x_fc = Flatten()(x_fc) x_fc = Dense(1000, activation='softmax', name='fc1000')(x_fc) model = Model(img_input, x_fc) weights_path = resnet152_weights # if K.image_dim_ordering() == 'th': # # Use pre-trained weights for Theano backend # weights_path = 'imagenet_models/resnet152_weights_th.h5' # else: # # Use pre-trained weights for Tensorflow backend # weights_path = 'imagenet_models/resnet152_weights_tf.h5' model.load_weights(weights_path, by_name=True) # Truncate and replace softmax layer for transfer learning # Cannot use model.layers.pop() since model is not of Sequential() type # The method below works since pre-trained weights are stored in layers but not in the model x_newfc = AveragePooling2D((7, 7), name='avg_pool')(x) x_newfc = Flatten()(x_newfc) x_newfc = Dense(num_classes, activation='softmax', name='fc8')(x_newfc) model = Model(img_input, x_newfc) # Learning rate is changed to 0.001 # sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True) # model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) return model
def densenet121_model(img_rows, img_cols, color_type=1, nb_dense_block=4, growth_rate=32, nb_filter=64, reduction=0.5, dropout_rate=0.0, weight_decay=1e-4, num_classes=None): ''' DenseNet 121 Model for Keras Model Schema is based on https://github.com/flyyufelix/DenseNet-Keras ImageNet Pretrained Weights Theano: https://drive.google.com/open?id=0Byy2AcGyEVxfMlRYb3YzV210VzQ TensorFlow: https://drive.google.com/open?id=0Byy2AcGyEVxfSTA4SHJVOHNuTXc # Arguments nb_dense_block: number of dense blocks to add to end growth_rate: number of filters to add per dense block nb_filter: initial number of filters reduction: reduction factor of transition blocks. dropout_rate: dropout rate weight_decay: weight decay factor classes: optional number of classes to classify images weights_path: path to pre-trained weights # Returns A Keras model instance. ''' eps = 1.1e-5 # compute compression factor compression = 1.0 - reduction # Handle Dimension Ordering for different backends global concat_axis if K.image_dim_ordering() == 'tf': concat_axis = 3 img_input = Input(shape=(img_rows, img_cols, color_type), name='data') else: concat_axis = 1 img_input = Input(shape=(color_type, img_rows, img_cols), name='data') # From architecture for ImageNet (Table 1 in the paper) nb_filter = 64 nb_layers = [6, 12, 24, 16] # For DenseNet-121 # Initial convolution x = ZeroPadding2D((3, 3), name='conv1_zeropadding')(img_input) x = Convolution2D(nb_filter, 7, 7, subsample=(2, 2), name='conv1', bias=False)(x) x = BatchNormalization(epsilon=eps, axis=concat_axis, name='conv1_bn')(x) x = Scale(axis=concat_axis, name='conv1_scale')(x) x = Activation('relu', name='relu1')(x) x = ZeroPadding2D((1, 1), name='pool1_zeropadding')(x) x = MaxPooling2D((3, 3), strides=(2, 2), name='pool1')(x) # Add dense blocks for block_idx in range(nb_dense_block - 1): stage = block_idx + 2 x, nb_filter = dense_block(x, stage, nb_layers[block_idx], nb_filter, growth_rate, dropout_rate=dropout_rate, weight_decay=weight_decay) # Add transition_block x = transition_block(x, stage, nb_filter, compression=compression, dropout_rate=dropout_rate, weight_decay=weight_decay) nb_filter = int(nb_filter * compression) final_stage = stage + 1 x, nb_filter = dense_block(x, final_stage, nb_layers[-1], nb_filter, growth_rate, dropout_rate=dropout_rate, weight_decay=weight_decay) x = BatchNormalization(epsilon=eps, axis=concat_axis, name='conv' + str(final_stage) + '_blk_bn')(x) x = Scale(axis=concat_axis, name='conv' + str(final_stage) + '_blk_scale')(x) x = Activation('relu', name='relu' + str(final_stage) + '_blk')(x) x_fc = GlobalAveragePooling2D(name='pool' + str(final_stage))(x) x_fc = Dense(1000, name='fc6')(x_fc) x_fc = Activation('softmax', name='prob')(x_fc) model = Model(img_input, x_fc, name='densenet') weights_path = densenet121_weights # if K.image_dim_ordering() == 'th': # # Use pre-trained weights for Theano backend # weights_path = 'imagenet_models/densenet121_weights_th.h5' # else: # # Use pre-trained weights for Tensorflow backend # weights_path = 'imagenet_models/densenet121_weights_tf.h5' model.load_weights(weights_path, by_name=True) # Truncate and replace softmax layer for transfer learning # Cannot use model.layers.pop() since model is not of Sequential() type # The method below works since pre-trained weights are stored in layers but not in the model x_newfc = GlobalAveragePooling2D(name='pool' + str(final_stage))(x) x_newfc = Dense(num_classes, name='fc6')(x_newfc) x_newfc = Activation('softmax', name='prob')(x_newfc) model = Model(img_input, x_newfc) # Learning rate is changed to 0.001 # sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True) # model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) return model