def createInceptionSegNet(input_shape, n_labels, pool_size=(2, 2), output_mode="sigmoid"): # encoder inputs = Input(shape=input_shape) conv_1 = inceptionModule(inputs) conv_2 = inceptionModule(conv_1) pool_1, mask_1 = MaxPoolingWithArgmax2D(pool_size)(conv_2) conv_3 = inceptionModule(pool_1) conv_4 = inceptionModule(conv_3) pool_2, mask_2 = MaxPoolingWithArgmax2D(pool_size)(conv_4) ## encoding done, decoding start unpool_1 = MaxUnpooling2D(pool_size)([pool_2, mask_2]) conv_4 = inceptionModule(unpool_1) conv_5 = inceptionModule(conv_4) unpool_2 = MaxUnpooling2D(pool_size)([conv_5, mask_1]) conv_5 = inceptionModule(unpool_2) conv_6 = inceptionModule(conv_5) conv_7 = Convolution2D(n_labels, (1, 1), padding='valid')(conv_6) reshape = Reshape((n_labels, input_shape[0] * input_shape[1]))(conv_7) permute = Permute((2, 1))(reshape) outputs = Activation(output_mode)(permute) segnet = Model(inputs=inputs, outputs=outputs) return segnet
def create2LayerSegNetWithIndexPooling(input_shape, n_labels, k, kernel=3, pool_size=(2, 2), output_mode="sigmoid"): # encoder inputs = Input(shape=input_shape) conv_1 = Convolution2D(k, (kernel, kernel), padding="same")(inputs) conv_1 = BatchNormalization()(conv_1) conv_1 = PReLU()(conv_1) conv_2 = Convolution2D(k, (kernel, kernel), padding="same")(conv_1) conv_2 = BatchNormalization()(conv_2) conv_2 = PReLU()(conv_2) pool_1, mask_1 = MaxPoolingWithArgmax2D(pool_size)(conv_2) conv_3 = Convolution2D(2*k, (kernel, kernel), padding="same")(pool_1) conv_3 = BatchNormalization()(conv_3) conv_3 = PReLU()(conv_3) conv_4 = Convolution2D(2*k, (kernel, kernel), padding="same")(conv_3) conv_4 = BatchNormalization()(conv_4) conv_4 = PReLU()(conv_4) pool_2, mask_2 = MaxPoolingWithArgmax2D(pool_size)(conv_4) ## encoder done, decoder start ## unpool_2 = MaxUnpooling2D(pool_size)([pool_2, mask_2]) conv_9 = Convolution2D(2*k, (kernel, kernel), padding="same")(unpool_2) conv_9 = BatchNormalization()(conv_9) conv_9 = PReLU()(conv_9) conv_10 = Convolution2D(2*k, (kernel, kernel), padding="same")(conv_9) conv_10 = BatchNormalization()(conv_10) conv_10 = PReLU()(conv_10) unpool_3 = MaxUnpooling2D(pool_size)([conv_10, mask_1]) conv_11 = Convolution2D(k, (kernel, kernel), padding="same")(unpool_3) conv_11 = BatchNormalization()(conv_11) conv_11 = PReLU()(conv_11) conv_12 = Convolution2D(k, (kernel, kernel), padding="same")(conv_11) conv_12 = BatchNormalization()(conv_12) conv_12 = PReLU()(conv_12) conv_13 = Convolution2D(n_labels, (1, 1), padding='valid')(conv_12) conv_13 = BatchNormalization()(conv_13) reshape = Reshape((n_labels, input_shape[0] * input_shape[1]))(conv_13) permute = Permute((2, 1))(reshape) outputs = Activation(output_mode)(permute) segnet = Model(inputs=inputs, outputs=outputs) return segnet
def CreateSegNet(input_shape, n_labels, kernel=3, pool_size=(2, 2), output_mode="softmax"): # encoder inputs = Input(shape=input_shape) conv_1 = Convolution2D(64, (kernel, kernel), padding="same")(inputs) conv_1 = BatchNormalization()(conv_1) conv_1 = Activation("relu")(conv_1) conv_2 = Convolution2D(64, (kernel, kernel), padding="same")(conv_1) conv_2 = BatchNormalization()(conv_2) conv_2 = Activation("relu")(conv_2) pool_1, mask_1 = MaxPoolingWithArgmax2D(pool_size)(conv_2) conv_3 = Convolution2D(128, (kernel, kernel), padding="same")(pool_1) conv_3 = BatchNormalization()(conv_3) conv_3 = Activation("relu")(conv_3) conv_4 = Convolution2D(128, (kernel, kernel), padding="same")(conv_3) conv_4 = BatchNormalization()(conv_4) conv_4 = Activation("relu")(conv_4) pool_2, mask_2 = MaxPoolingWithArgmax2D(pool_size)(conv_4) conv_5 = Convolution2D(256, (kernel, kernel), padding="same")(pool_2) conv_5 = BatchNormalization()(conv_5) conv_5 = Activation("relu")(conv_5) conv_6 = Convolution2D(256, (kernel, kernel), padding="same")(conv_5) conv_6 = BatchNormalization()(conv_6) conv_6 = Activation("relu")(conv_6) conv_7 = Convolution2D(256, (kernel, kernel), padding="same")(conv_6) conv_7 = BatchNormalization()(conv_7) conv_7 = Activation("relu")(conv_7) pool_3, mask_3 = MaxPoolingWithArgmax2D(pool_size)(conv_7) conv_8 = Convolution2D(512, (kernel, kernel), padding="same")(pool_3) conv_8 = BatchNormalization()(conv_8) conv_8 = Activation("relu")(conv_8) conv_9 = Convolution2D(512, (kernel, kernel), padding="same")(conv_8) conv_9 = BatchNormalization()(conv_9) conv_9 = Activation("relu")(conv_9) conv_10 = Convolution2D(512, (kernel, kernel), padding="same")(conv_9) conv_10 = BatchNormalization()(conv_10) conv_10 = Activation("relu")(conv_10) pool_4, mask_4 = MaxPoolingWithArgmax2D(pool_size)(conv_10) conv_11 = Convolution2D(512, (kernel, kernel), padding="same")(pool_4) conv_11 = BatchNormalization()(conv_11) conv_11 = Activation("relu")(conv_11) conv_12 = Convolution2D(512, (kernel, kernel), padding="same")(conv_11) conv_12 = BatchNormalization()(conv_12) conv_12 = Activation("relu")(conv_12) conv_13 = Convolution2D(512, (kernel, kernel), padding="same")(conv_12) conv_13 = BatchNormalization()(conv_13) conv_13 = Activation("relu")(conv_13) pool_5, mask_5 = MaxPoolingWithArgmax2D(pool_size)(conv_13) print("Build encoder done..") # decoder unpool_1 = MaxUnpooling2D(pool_size)([pool_5, mask_5]) conv_14 = Convolution2D(512, (kernel, kernel), padding="same")(unpool_1) conv_14 = BatchNormalization()(conv_14) conv_14 = Activation("relu")(conv_14) conv_15 = Convolution2D(512, (kernel, kernel), padding="same")(conv_14) conv_15 = BatchNormalization()(conv_15) conv_15 = Activation("relu")(conv_15) conv_16 = Convolution2D(512, (kernel, kernel), padding="same")(conv_15) conv_16 = BatchNormalization()(conv_16) conv_16 = Activation("relu")(conv_16) unpool_2 = MaxUnpooling2D(pool_size)([conv_16, mask_4]) conv_17 = Convolution2D(512, (kernel, kernel), padding="same")(unpool_2) conv_17 = BatchNormalization()(conv_17) conv_17 = Activation("relu")(conv_17) conv_18 = Convolution2D(512, (kernel, kernel), padding="same")(conv_17) conv_18 = BatchNormalization()(conv_18) conv_18 = Activation("relu")(conv_18) conv_19 = Convolution2D(256, (kernel, kernel), padding="same")(conv_18) conv_19 = BatchNormalization()(conv_19) conv_19 = Activation("relu")(conv_19) unpool_3 = MaxUnpooling2D(pool_size)([conv_19, mask_3]) conv_20 = Convolution2D(256, (kernel, kernel), padding="same")(unpool_3) conv_20 = BatchNormalization()(conv_20) conv_20 = Activation("relu")(conv_20) conv_21 = Convolution2D(256, (kernel, kernel), padding="same")(conv_20) conv_21 = BatchNormalization()(conv_21) conv_21 = Activation("relu")(conv_21) conv_22 = Convolution2D(128, (kernel, kernel), padding="same")(conv_21) conv_22 = BatchNormalization()(conv_22) conv_22 = Activation("relu")(conv_22) unpool_4 = MaxUnpooling2D(pool_size)([conv_22, mask_2]) conv_23 = Convolution2D(128, (kernel, kernel), padding="same")(unpool_4) conv_23 = BatchNormalization()(conv_23) conv_23 = Activation("relu")(conv_23) conv_24 = Convolution2D(64, (kernel, kernel), padding="same")(conv_23) conv_24 = BatchNormalization()(conv_24) conv_24 = Activation("relu")(conv_24) unpool_5 = MaxUnpooling2D(pool_size)([conv_24, mask_1]) conv_25 = Convolution2D(64, (kernel, kernel), padding="same")(unpool_5) conv_25 = BatchNormalization()(conv_25) conv_25 = Activation("relu")(conv_25) conv_26 = Convolution2D(n_labels, (1, 1), padding="valid")(conv_25) conv_26 = BatchNormalization()(conv_26) conv_26 = Reshape( (input_shape[0] * input_shape[1], n_labels), input_shape=(input_shape[0], input_shape[1], n_labels))(conv_26) outputs = Activation(output_mode)(conv_26) print("Build decoder done..") segnet = Model(inputs=inputs, outputs=outputs, name="SegNet") return segnet
def create3LayerSegNetWithIndexPooling(input_shape, n_labels, k, kernel=3, pool_size=(2, 2), output_mode="sigmoid"): inputs = Input(shape=input_shape) conv_1 = Convolution2D(k, (kernel, kernel), padding="same")(inputs) conv_1 = BatchNormalization()(conv_1) conv_1 = PReLU()(conv_1) conv_2 = Convolution2D(k, (kernel, kernel), padding="same")(conv_1) #conv_2 = Dropout(0.5)(conv_2) conv_2 = BatchNormalization()(conv_2) conv_2 = PReLU()(conv_2) pool_1, mask_1 = MaxPoolingWithArgmax2D(pool_size)(conv_2) conv_3 = Convolution2D(2*k, (kernel, kernel), padding="same")(pool_1) conv_3 = BatchNormalization()(conv_3) conv_3 = PReLU()(conv_3) conv_4 = Convolution2D(2*k, (kernel, kernel), padding="same")(conv_3) #conv_4 = Dropout(0.5)(conv_4) conv_4 = BatchNormalization()(conv_4) conv_4 = PReLU()(conv_4) pool_2, mask_2 = MaxPoolingWithArgmax2D(pool_size)(conv_4) conv_5 = Convolution2D(4*k, (kernel, kernel), padding="same")(pool_2) conv_5 = BatchNormalization()(conv_5) conv_5 = PReLU()(conv_5) conv_6 = Convolution2D(4*k, (kernel, kernel), padding="same")(conv_5) conv_6 = BatchNormalization()(conv_6) conv_6 = PReLU()(conv_6) conv_7 = Convolution2D(4*k, (kernel, kernel), padding="same")(conv_6) conv_7 = BatchNormalization()(conv_7) conv_7 = PReLU()(conv_7) pool_3, mask_3 = MaxPoolingWithArgmax2D(pool_size)(conv_7) unpool_1 = MaxUnpooling2D(pool_size)([pool_3, mask_3]) conv_8 = Convolution2D(4*k, (kernel, kernel), padding="same")(unpool_1) conv_8 = BatchNormalization()(conv_8) conv_8 = PReLU()(conv_8) conv_9 = Convolution2D(4*k, (kernel, kernel), padding="same")(conv_8) conv_9 = BatchNormalization()(conv_9) conv_9 = PReLU()(conv_9) conv_10 = Convolution2D(4*k, (kernel, kernel), padding="same")(conv_9) conv_10 = BatchNormalization()(conv_10) conv_10 = PReLU()(conv_10) unpool_2 = MaxUnpooling2D(pool_size)([conv_10, mask_2]) conv_11 = Convolution2D(2*k, (kernel, kernel), padding="same")(unpool_2) conv_11 = BatchNormalization()(conv_11) conv_11 = PReLU()(conv_11) conv_12 = Convolution2D(2*k, (kernel, kernel), padding="same")(conv_11) conv_12 = BatchNormalization()(conv_12) conv_12 = PReLU()(conv_12) unpool_3 = MaxUnpooling2D(pool_size)([conv_12, mask_1]) conv_13 = Convolution2D(k, (kernel, kernel), padding="same")(unpool_3) conv_13 = BatchNormalization()(conv_13) conv_13 = PReLU()(conv_13) conv_14 = Convolution2D(k, (kernel, kernel), padding="same")(conv_13) conv_14 = BatchNormalization()(conv_14) conv_14 = PReLU()(conv_14) conv_15 = Convolution2D(n_labels, (1, 1), padding='valid')(conv_14) conv_15 = BatchNormalization()(conv_15) reshape = Reshape((n_labels, input_shape[0] * input_shape[1]))(conv_15) permute = Permute((2, 1))(reshape) outputs = Activation(output_mode)(permute) segnet = Model(inputs=inputs, outputs=outputs) return segnet
def main(): hardwareHandler = HardwareHandler() emailHandler = EmailHandler() timer = TimerModule() now = datetime.now() date_string = now.strftime('%Y-%m-%d_%H_%M') dataHandler = SegNetDataHandler("Data/BRATS_2018/HGG", BasicNMFComputer(block_dim=8), num_patients=1) dataHandler.loadData("flair") dataHandler.preprocessForNetwork() x_train = dataHandler.X x_seg_train = dataHandler.labels dataHandler.clear() dataHandler.setDataDirectory("Data/BRATS_2018/HGG_Validation") dataHandler.setNumPatients(1) dataHandler.loadData("flair") dataHandler.preprocessForNetwork() x_val = dataHandler.X x_seg_val = dataHandler.labels dataHandler.clear() dataHandler.setDataDirectory("Data/BRATS_2018/HGG_Testing") dataHandler.setNumPatients(1) dataHandler.loadData("flair") dataHandler.preprocessForNetwork() x_test = dataHandler.X x_seg_test = dataHandler.labels dataHandler.clear() input_shape = (dataHandler.W, dataHandler.H, 1) inputs = Input(shape=input_shape) kernel = 3 pool_size = (2, 2) output_mode = "softmax" n_labels = 2 conv_1 = Conv2D(64, (kernel, kernel), padding="same")(inputs) conv_1 = BatchNormalization()(conv_1) conv_1 = Activation("relu")(conv_1) conv_2 = Conv2D(64, (kernel, kernel), padding="same")(conv_1) conv_2 = BatchNormalization()(conv_2) conv_2 = Activation("relu")(conv_2) pool_1, mask_1 = MaxPoolingWithArgmax2D(pool_size)(conv_2) conv_3 = Conv2D(128, (kernel, kernel), padding="same")(pool_1) conv_3 = BatchNormalization()(conv_3) conv_3 = Activation("relu")(conv_3) conv_4 = Conv2D(128, (kernel, kernel), padding="same")(conv_3) conv_4 = BatchNormalization()(conv_4) conv_4 = Activation("relu")(conv_4) pool_2, mask_2 = MaxPoolingWithArgmax2D(pool_size)(conv_4) conv_5 = Conv2D(256, (kernel, kernel), padding="same")(pool_2) conv_5 = BatchNormalization()(conv_5) conv_5 = Activation("relu")(conv_5) conv_6 = Conv2D(256, (kernel, kernel), padding="same")(conv_5) conv_6 = BatchNormalization()(conv_6) conv_6 = Activation("relu")(conv_6) conv_7 = Conv2D(256, (kernel, kernel), padding="same")(conv_6) conv_7 = BatchNormalization()(conv_7) conv_7 = Activation("relu")(conv_7) pool_3, mask_3 = MaxPoolingWithArgmax2D(pool_size)(conv_7) conv_8 = Conv2D(512, (kernel, kernel), padding="same")(pool_3) conv_8 = BatchNormalization()(conv_8) conv_8 = Activation("relu")(conv_8) conv_9 = Conv2D(512, (kernel, kernel), padding="same")(conv_8) conv_9 = BatchNormalization()(conv_9) conv_9 = Activation("relu")(conv_9) conv_10 = Conv2D(512, (kernel, kernel), padding="same")(conv_9) conv_10 = BatchNormalization()(conv_10) conv_10 = Activation("relu")(conv_10) pool_4, mask_4 = MaxPoolingWithArgmax2D(pool_size)(conv_10) conv_11 = Conv2D(512, (kernel, kernel), padding="same")(pool_4) conv_11 = BatchNormalization()(conv_11) conv_11 = Activation("relu")(conv_11) conv_12 = Conv2D(512, (kernel, kernel), padding="same")(conv_11) conv_12 = BatchNormalization()(conv_12) conv_12 = Activation("relu")(conv_12) conv_13 = Conv2D(512, (kernel, kernel), padding="same")(conv_12) conv_13 = BatchNormalization()(conv_13) conv_13 = Activation("relu")(conv_13) pool_5, mask_5 = MaxPoolingWithArgmax2D(pool_size)(conv_13) print("Build encoder done..") # decoder unpool_1 = MaxUnpooling2D(pool_size)([pool_5, mask_5]) conv_14 = Conv2D(512, (kernel, kernel), padding="same")(unpool_1) conv_14 = BatchNormalization()(conv_14) conv_14 = Activation("relu")(conv_14) conv_15 = Conv2D(512, (kernel, kernel), padding="same")(conv_14) conv_15 = BatchNormalization()(conv_15) conv_15 = Activation("relu")(conv_15) conv_16 = Conv2D(512, (kernel, kernel), padding="same")(conv_15) conv_16 = BatchNormalization()(conv_16) conv_16 = Activation("relu")(conv_16) unpool_2 = MaxUnpooling2D(pool_size)([conv_16, mask_4]) conv_17 = Conv2D(512, (kernel, kernel), padding="same")(unpool_2) conv_17 = BatchNormalization()(conv_17) conv_17 = Activation("relu")(conv_17) conv_18 = Conv2D(512, (kernel, kernel), padding="same")(conv_17) conv_18 = BatchNormalization()(conv_18) conv_18 = Activation("relu")(conv_18) conv_19 = Conv2D(256, (kernel, kernel), padding="same")(conv_18) conv_19 = BatchNormalization()(conv_19) conv_19 = Activation("relu")(conv_19) unpool_3 = MaxUnpooling2D(pool_size)([conv_19, mask_3]) conv_20 = Conv2D(256, (kernel, kernel), padding="same")(unpool_3) conv_20 = BatchNormalization()(conv_20) conv_20 = Activation("relu")(conv_20) conv_21 = Conv2D(256, (kernel, kernel), padding="same")(conv_20) conv_21 = BatchNormalization()(conv_21) conv_21 = Activation("relu")(conv_21) conv_22 = Conv2D(128, (kernel, kernel), padding="same")(conv_21) conv_22 = BatchNormalization()(conv_22) conv_22 = Activation("relu")(conv_22) unpool_4 = MaxUnpooling2D(pool_size)([conv_22, mask_2]) conv_23 = Conv2D(128, (kernel, kernel), padding="same")(unpool_4) conv_23 = BatchNormalization()(conv_23) conv_23 = Activation("relu")(conv_23) conv_24 = Conv2D(64, (kernel, kernel), padding="same")(conv_23) conv_24 = BatchNormalization()(conv_24) conv_24 = Activation("relu")(conv_24) unpool_5 = MaxUnpooling2D(pool_size)([conv_24, mask_1]) conv_25 = Conv2D(64, (kernel, kernel), padding="same")(unpool_5) conv_25 = BatchNormalization()(conv_25) conv_25 = Activation("relu")(conv_25) conv_26 = Conv2D(n_labels, (1, 1), padding="valid")(conv_25) conv_26 = BatchNormalization()(conv_26) conv_26 = Reshape( (input_shape[0] * input_shape[1], n_labels), input_shape=(input_shape[0], input_shape[1], n_labels))(conv_26) outputs = Activation(output_mode)(conv_26) print("Build decoder done..") segnet = Model(inputs=inputs, outputs=outputs, name="SegNet") segnet.compile(optimizer='adadelta', loss='categorical_crossentropy') segnet.fit( x_train, x_seg_train, epochs=10, batch_size=10, shuffle=True, validation_data=(x_val, x_seg_val), ) decoded_imgs = segnet.predict(x_test) n = 10 for i in range(n): fig = plt.figure() plt.gray() a = fig.add_subplot(1, 2, 1) plt.imshow(x_seg_test[i].reshape(dataHandler.W, dataHandler.W)) plt.axis('off') plt.title('Original') a = fig.add_subplot(1, 2, 2) plt.imshow(decoded_imgs[i].reshape(dataHandler.W, dataHandler.W)) plt.gray() plt.show() for i in range(n): # display original ax = plt.subplot(2, n, i) plt.imshow(x_test[i].reshape(dataHandler.W, dataHandler.W)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # display reconstruction ax = plt.subplot(2, n, i + n) plt.imshow(decoded_imgs[i].reshape(dataHandler.W, dataHandler.W)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() """
def SegNetEncoderDecoderGenerator(inputs, layers, pool_size=(2, 2), shave_off_decoder_end=0): ''' Creates an convolutional symmetric encoder-decoder architecture similar to that of a SegNet. The exact structure is defined by the 'layers' argument which should be a list of tuples, each tuple representing the number and width of convolutional layers at each stage of encoder/decoder. ''' masks = [] io = inputs total_layers = 0 # encoder with tf.name_scope('encoder'): for idx, group in enumerate(layers): layers_no = group[0] width = group[1] kernel = group[2] for i in range(layers_no): with tf.name_scope('encoder_{0}x{0}_{1}ch'.format( kernel, width)): io = Convolution2D(width, (kernel, kernel), padding="same")(io) io = BatchNormalization()(io) io = Activation("relu")(io) total_layers += 1 io, mask = MaxPoolingWithArgmax2D(pool_size)(io) masks.append(mask) print("Building enceder done..") # decoder if shave_off_decoder_end > 0: total_layers -= shave_off_decoder_end with tf.name_scope('decoder'): for idx, group in enumerate(reversed(layers)): layers_no = group[0] width = group[1] kernel = group[2] io = MaxUnpooling2D(pool_size)([io, masks[-1 - idx]]) for i in range(layers_no): # if this is the last convolution in a series, followed up by # unpooling and then a convolution group with a different width, it # has to reduce width of the tensor now if i == layers_no - 1 and idx != len(layers) - 1: # last layer before UnPooling width = layers[-1 - idx - 1][1] with tf.name_scope('decoder_{0}x{0}_{1}ch'.format( kernel, width)): io = Convolution2D(width, (kernel, kernel), padding="same")(io) io = BatchNormalization()(io) io = Activation("relu")(io) total_layers -= 1 if total_layers <= 0: return io, masks[:-1 - idx] print("Building decoder done..")
with tf.device('/cpu:0'): input_shape = (dataHandler.n, dataHandler.n, 1) n_labels = (dataHandler.n, dataHandler.n, 1) inputs = Input(shape=input_shape) kernel = 3 pool_size = 2 output_mode = "softmax" conv_1 = Conv2D(64, (kernel, kernel), padding="same")(inputs) conv_1 = BatchNormalization()(conv_1) conv_1 = Activation("relu")(conv_1) conv_2 = Conv2D(64, (kernel, kernel), padding="same")(conv_1) conv_2 = BatchNormalization()(conv_2) conv_2 = Activation("relu")(conv_2) pool_1, mask_1 = MaxPoolingWithArgmax2D(pool_size)(conv_2) conv_3 = Conv2D(128, (kernel, kernel), padding="same")(pool_1) conv_3 = BatchNormalization()(conv_3) conv_3 = Activation("relu")(conv_3) conv_4 = Conv2D(128, (kernel, kernel), padding="same")(conv_3) conv_4 = BatchNormalization()(conv_4) conv_4 = Activation("relu")(conv_4) pool_2, mask_2 = MaxPoolingWithArgmax2D(pool_size)(conv_4) conv_5 = Conv2D(256, (kernel, kernel), padding="same")(pool_2) conv_5 = BatchNormalization()(conv_5) conv_5 = Activation("relu")(conv_5) conv_6 = Conv2D(256, (kernel, kernel), padding="same")(conv_5) conv_6 = BatchNormalization()(conv_6)