示例#1
0
def NIST_Dataset(DataSet,
                 method='leastsq',
                 start='start2',
                 plot=False,
                 verbose=False):

    NISTdata = ReadNistData(DataSet)
    resid, npar, dimx = Models[DataSet]
    y = NISTdata['y']
    x = NISTdata['x']

    params = Parameters()
    for i in range(npar):
        pname = 'b%i' % (i + 1)
        cval = NISTdata['cert_values'][i]
        cerr = NISTdata['cert_stderr'][i]
        pval1 = NISTdata[start][i]
        params.add(pname, value=pval1)

    myfit = minimize(resid, params, method=method, args=(x, ), kws={'y': y})
    digs, buff = Compare_NIST_Results(DataSet, myfit, myfit.params, NISTdata)
    if verbose:
        print(buff)

    return digs > 1
def NIST_Test(DataSet, start='start2', plot=True):

    NISTdata = ReadNistData(DataSet)
    resid, npar, dimx = Models[DataSet]
    y = NISTdata['y']
    x = NISTdata['x']

    vals = []
    for i in range(npar):
        pval1 = NISTdata[start][i]
        vals.append(pval1)

    maxfev = 2500 * (npar + 1)
    factor = 100
    xtol = 1.e-14
    ftol = 1.e-14
    epsfcn = 1.e-13
    gtol = 1.e-14
    diag = None
    print(" Fit with: ", factor, xtol, ftol, gtol, epsfcn, diag)

    _best, out, ier = _minpack._lmdif(resid, vals, (x, y), 1,
                                      ftol, xtol, gtol,
                                      maxfev, epsfcn, factor, diag)

    digs = Compare_NIST_Results(DataSet, _best, NISTdata)

    if plot and HASPYLAB:
        fit = -resid(_best, x, )
        plt.plot(x, y, 'ro')
        plt.plot(x, fit, 'k+-')
        plt.show()

    return digs > 2
示例#3
0
def NIST_Test(DataSet, method='leastsq', start='start2', plot=True):

    NISTdata = ReadNistData(DataSet)
    resid, npar, dimx = Models[DataSet]
    y = NISTdata['y']
    x = NISTdata['x']

    params = Parameters()
    for i in range(npar):
        pname = 'b%i' % (i + 1)
        cval = NISTdata['cert_values'][i]
        cerr = NISTdata['cert_stderr'][i]
        pval1 = NISTdata[start][i]
        params.add(pname, value=pval1)

    myfit = minimize(resid, params, method=method, args=(x, ), kws={'y': y})
    digs = Compare_NIST_Results(DataSet, myfit, params, NISTdata)

    if plot and HASPYLAB:
        fit = -resid(
            params,
            x,
        )
        pylab.plot(x, y, 'ro')
        pylab.plot(x, fit, 'k+-')
        pylab.show()

    return digs > 2
示例#4
0
def NIST_Dataset(DataSet,
                 method='leastsq',
                 start='start2',
                 plot=False,
                 verbose=False):

    NISTdata = ReadNistData(DataSet)
    resid, npar, dimx = Models[DataSet]
    y = NISTdata['y']
    x = NISTdata['x']

    params = Parameters()
    for i in range(npar):
        pname = 'b%i' % (i + 1)
        pval1 = NISTdata[start][i]
        params.add(pname, value=pval1)
    try:
        myfit = minimize(resid,
                         params,
                         method=method,
                         args=(x, ),
                         kws={'y': y},
                         nan_policy='raise')
    except ValueError:
        if verbose:
            print("Fit failed... nans?")
        return False
    digs, buff = Compare_NIST_Results(DataSet, myfit, myfit.params, NISTdata)
    if verbose:
        print(buff)

    return digs > 2
示例#5
0
def NIST_Test(DataSet, start='start2', plot=True):

    NISTdata = ReadNistData(DataSet)
    resid, npar, dimx = Models[DataSet]
    y = NISTdata['y']
    x = NISTdata['x']

    vals = []
    for i in range(npar):
        pname = 'b%i' % (i + 1)
        cval = NISTdata['cert_values'][i]
        cerr = NISTdata['cert_stderr'][i]
        pval1 = NISTdata[start][i]
        vals.append(pval1)

    maxfev = 2500 * (npar + 1)
    factor = 100
    xtol = 1.e-14
    ftol = 1.e-14
    epsfcn = 1.e-13
    gtol = 1.e-14
    diag = None
    print(" Fit with: ", factor, xtol, ftol, gtol, epsfcn, diag)

    # _best, out, ier = _minpack._lmdif(resid, vals, (x, y), 1,
    #                                   ftol, xtol, gtol,
    #                                   maxfev, epsfcn, factor, diag)
    from scipy.optimize import least_squares
    res = least_squares(resid,
                        vals,
                        args=(x, y),
                        ftol=ftol,
                        xtol=xtol,
                        gtol=gtol,
                        diff_step=np.sqrt(epsfcn),
                        scaling=1.,
                        method='dogbox')
    _best = res.x

    digs = Compare_NIST_Results(DataSet, _best, NISTdata)

    if plot and HASPYLAB:
        fit = -resid(
            _best,
            x,
        )
        pylab.plot(x, y, 'ro')
        pylab.plot(x, fit, 'k+-')
        pylab.show()

    return digs > 2
示例#6
0
def RunNIST_Model(model):

    dset = ReadNistData(model)
    func, npar, dimx = Models[model]
    rss = (func(dset['cert_values'], x=dset['x'], y=dset['y'])**2).sum()
    tiny_rss = 1.e-16
    print(rss, dset['sum_squares'], tiny_rss)

    if dset['sum_squares'] < tiny_rss:
        assert rss < tiny_rss
    else:
        assert_allclose(rss, dset['sum_squares'])

    out1 = NIST_Dataset(model, start='start1', plot=False, verbose=False)
    out2 = NIST_Dataset(model, start='start2', plot=False, verbose=False)
    assert (out1 or out2)
    return out1 or out2
示例#7
0
def NIST_Test(DataSet, start='start2', plot=True):

    NISTdata = ReadNistData(DataSet)
    resid, npar, dimx = Models[DataSet]
    y = NISTdata['y']
    x = NISTdata['x']

    params = []
    param_names = []
    for i in range(npar):
        pname = 'b%i' % (i+1)
        cval  = NISTdata['cert_values'][i]
        cerr  = NISTdata['cert_stderr'][i]
        pval1 = NISTdata[start][i]
        params.append(pval1)
        param_names.append(pname)


        #     myfit = Minimizer(resid, params, fcn_args=(x,), fcn_kws={'y':y},
        #                       scale_covar=True)
        #
    print 'lsout ', params
    lsout = leastsq(resid, params, args=(x, y), full_output=True)

    print 'lsout ', lsout
    print params   , len(x), len(y)

    digs = Compare_NIST_Results(DataSet,  params, NISTdata)

    if plot and HASPYLAB:
        fit = -resid(params, x, )
        pylab.plot(x, y, 'r+-')
        pylab.plot(x, fit, 'ko--')
        pylab.show()

    return digs > 2
示例#8
0
def NIST_Test(DataSet, start='start2', plot=True):

    NISTdata = ReadNistData(DataSet)
    resid, npar, dimx = Models[DataSet]
    y = NISTdata['y']
    x = NISTdata['x']

    params = Parameters()
    for i in range(npar):
        pname = 'b%i' % (i + 1)
        cval = NISTdata['cert_values'][i]
        cerr = NISTdata['cert_stderr'][i]
        pval1 = NISTdata[start][i]
        params.add(pname, value=pval1)

    myfit = Minimizer(resid,
                      params,
                      fcn_args=(x, ),
                      fcn_kws={'y': y},
                      scale_covar=True)

    myfit.prepare_fit()
    myfit.leastsq()

    digs = Compare_NIST_Results(DataSet, myfit, params, NISTdata)

    if plot and HASPYLAB:
        fit = -resid(
            params,
            x,
        )
        pylab.plot(x, y, 'r+')
        pylab.plot(x, fit, 'ko--')
        pylab.show()

    return digs > 2