示例#1
0
def insert_sorted_test():
    net = Network(1, 1, 1)
    for _ in range(100):
        e = Edge(net.nodes[0], net.nodes[0], random.randint(1000))
        net.insert_sorted(net.edges, e)
    for i in range(1, 100):
        assert (net.edges[i].innv >= net.edges[i - 1].innv)
示例#2
0
def trained_model_test():
    Network.setParams(5 + 1, 1, 20)
    pop = Population(100, 5 + 1, 1, 20, stock_environment.Stock_env)
    for epoch in range(500):
        start_time = time.perf_counter()

        stock_environment.Stock_env.setRandomStart()
        baseline = stock_environment.Stock_env.momentum_bot(
            stock_environment.Stock_env.trainingDat[
                stock_environment.Stock_env.random_stock],
            stock_environment.Stock_env.random_chunk_start,
            stock_environment.CHUNK)
        pop.setBaseline(baseline)
        pop.run()
        print(f"Momentum Fitness  {baseline}")
        print(f"Perfect Fitness  {stock_environment.Stock_env.perfect_bot()}")
        print(f"Chunk size {stock_environment.CHUNK}")
        print(f"Epoch {epoch}")
        print(f"Has {len(pop.population)} # of species")
        print(f"Has {pop.getCurrentPop()} # of members")
        print(f"Edge size {Network.edgeInnv.x}")
        print(f"Node size {Network.nodeInnv.x}")
        print(
            f"Average nodes per network: {np.mean([len([node for node in net.nodes if node.enabled])for species in pop.population for net in species.nets ])}"
        )
        # printNetwork(pop.population[0].nets[0])
        total_time = time.perf_counter() - start_time
        getTimes()['Untimed'] = total_time - totalTime()
        printTimer(scale=total_time)
        print(f"Elapsed time: { total_time}")
        resetTimer()
    pop.validate()
示例#3
0
def main(file_name):

    try:
        data = np.load('Data/' + str(file_name) + '.npy')
        data = np.clip(data, 0, 5) / 5
    except:
        print("Invalid File Name")
        return

    net = Network()
    net.load()

    f = open('Detections_' + str(file_name) + '.txt', 'a')

    for x in np.arange(0, np.shape(data)[1] - config.L, config.L):
        c = data[:, x:x + config.L]

        buffer = ImgBuffer()
        for n in range(np.shape(c)[0] - config.L):

            currIm = np.reshape(c[n:n + config.L, :], [1, config.L, config.L])
            pred = net.predict(currIm)

            boxes = process_pred(pred)

            buffer.update_timer()
            buffer.process_new(boxes, n, x)
            buffer.process_existing()

        buffer.clear_buffer()
        np.savetxt(f, buffer.final_array, delimiter=',', newline='\n')
    f.close()
示例#4
0
 def __init__(self, actions, device, lr=1e-2, gamma=0.99):
     super(Reinforce, self).__init__()
     self.device = device
     self.policy = Network(4, actions).to(device)
     self.optimizer = optim.Adam(self.policy.parameters(), lr=lr)
     self.memory = []
     self.gamma = gamma
     self.max_steps = 10000
示例#5
0
文件: Agent.py 项目: LBartolini/ComAI
 def __init__(self, n_word, turns_to_sleep):
     self.score = 0
     self.turns_to_sleep = turns_to_sleep
     # every turn he goes through +1 when reaching 5 goes to sleep 1 turn
     self.sleep = np.random.randint(0, turns_to_sleep)
     self.now = 0  # 0=ready, 1=sleeping, 2=waiting-other
     # 3 output = 3 possible actions to do
     self.hearing = Network([n_word, 1, 3])
     self.speaking = Network([3, 1, n_word])  # 10 output = 10 words
示例#6
0
def main():
    file_name = 'tmp'
    
    USRP_Host = '127.0.0.1'
    data_port = 5678
    
    context = zmq.Context()
    socket = context.socket(zmq.SUB)
    socket.connect('tcp://%s:%s' %(USRP_Host, data_port))
    socket.setsockopt_string(zmq.SUBSCRIBE, '')
    
    f = 460
    x = np.linspace(f-1.25, f+1.25, 2500).reshape(-1,1)

    thermalfloor = np.load('ThermalFloorModel.npy')
    relevant_floor = thermalfloor[2245:2245+32]
    net = Network()
    net.load()
    f = open('Detections_' + str(file_name) + '.txt', 'a')

    #fig, ax = plt.subplots(1,1)
    #plt.ion()
    
    imgbuffer = ImgBuffer()
    i = 0
    imgwindow = np.zeros([1,config.L, config.L])
    while True:
        #plt.cla()
        try: 
            md = socket.recv_json(flags=0)
            message = socket.recv(flags=zmq.NOBLOCK, copy=True, track=False)
            
            indata = np.frombuffer((message), dtype=md['dtype'])
            indata = indata.reshape(md['shape'])

            for k in range(config.L - 1):
                imgwindow[0,k,:] = imgwindow[0,k+1,:]
            imgwindow[0,-1] = np.clip(10.*np.log10(indata) - relevant_floor.T, 0, 5)/5
            
            pred = net.predict(imgwindow)
            boxes = process_pred(pred)
            
            imgbuffer.update_timer()
            imgbuffer.process_new(boxes, i, 2245)
            imgbuffer.process_existing()
            
            #ax.imshow(imgwindow[0], vmax = 1, vmin = 0)
            #plt.savefig(str(i))
            
        except zmq.ZMQError:
            time.sleep(.1)
        
        except KeyboardInterrupt:
            socket.close()
            context.term()
            sys.exit()
        i += 1    
示例#7
0
class Reinforce(object):
    def __init__(self, actions, device, lr=1e-2, gamma=0.99):
        super(Reinforce, self).__init__()
        self.device = device
        self.policy = Network(4, actions).to(device)
        self.optimizer = optim.Adam(self.policy.parameters(), lr=lr)
        self.memory = []
        self.gamma = gamma
        self.max_steps = 10000

    def get_action_and_prob(self, state):
        state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
        action_predictions = self.policy(state).cpu()
        action_probabilities = F.softmax(action_predictions, dim=-1)
        distributions = Categorical(action_probabilities)
        action = distributions.sample()
        return action.item(), distributions.log_prob(action)

    def run_episode(self, env, train):
        state = env.reset()
        total_rewards = 0
        loss = 0
        for times_step in range(self.max_steps):
            if not train:
                env.render()
            action, log_prob = self.get_action_and_prob(state)
            state, reward, done, _ = env.step(action)
            total_rewards += reward
            if train:
                self.add_rewards((reward, log_prob))
            if done:
                break
        if train:
            loss = self.train_policy()
        return total_rewards, loss

    def add_rewards(self, data):
        self.memory.append(data)

    def train_policy(self):

        self.policy.train()
        discounted_reward = 0
        self.optimizer.zero_grad()
        policy_loss = []
        for reward, prob in reversed(self.memory):
            discounted_reward = reward + self.gamma * discounted_reward
            policy_loss.append(-prob * discounted_reward)

        torch.tensor(policy_loss)
        policy_loss = torch.cat(policy_loss)
        policy_loss.sum().backward()
        self.optimizer.step()

        del self.memory[:]

        return policy_loss.mean().item()
示例#8
0
def multilayertest():
    n1 = Network(1, 1, 1)
    n1._add_edge(n1.nodes[0], n1.nodes[2], 3)
    # n1._add_edge(n1.nodes[0], n1.nodes[3], 3)
    # n1._add_edge(n1.nodes[1], n1.nodes[2], 3)
    # n1._add_edge(n1.nodes[1], n1.nodes[2], 3)
    # n1._add_edge(n1.nodes[1], n1.nodes[3], 3)
    # n1.mutate_add_edge()
    # n1.mutate_add_node()
    printNetwork(n1)
    '''
示例#9
0
def crossoverTest():
    numInputs = random.randint(1, 6)
    numRnn = random.randint(1, 6)
    numOutputs = random.randint(1, 6)
    numNets = 100
    nets = [None] * numNets
    for netIdx in range(numNets):
        net = Network(numInputs, numOutputs, numRnn, empty=False)
        newNodes = random.randint(1, 6)
        newEdges = random.randint(1, 6)
        for hiddenIdx in range(newEdges):
            net.mutate_add_edge()
        for hiddenIdx in range(newNodes):
            net.mutate_add_node()
        nets[netIdx] = net
    for i in range(100):
        for j in range(i + 1, 100):
            newNet = Network.crossover(nets[i], nets[j])
            # Test innovation numbers all transfered over
            oldInnovation1 = set([edge.innv for edge in nets[i].edges])
            oldInnovation2 = set([edge.innv for edge in nets[j].edges])
            newInnovation = set([edge.innv for edge in newNet.edges])
            assert (len(oldInnovation2) > 0)
            assert (len(oldInnovation1) > 0)
            assert (len(newInnovation) > 0)
            assert (
                oldInnovation1.union(oldInnovation2).issubset(newInnovation))
            # Test edge innovations are in increasing order
            for i in range(1, len(newNet.edges)):
                assert (newNet.edges[i].innv > newNet.edges[i - 1].innv)
            for node in newNet.nodes:
                edgesIn = node.edgesIn
                for i in range(1, len(edgesIn)):
                    assert (edgesIn[i].innv > edgesIn[i - 1].innv)
示例#10
0
文件: Agent.py 项目: LBartolini/ComAI
class Agent():  # aka Gino
    def __init__(self, n_word, turns_to_sleep):
        self.score = 0
        self.turns_to_sleep = turns_to_sleep
        # every turn he goes through +1 when reaching 5 goes to sleep 1 turn
        self.sleep = np.random.randint(0, turns_to_sleep)
        self.now = 0  # 0=ready, 1=sleeping, 2=waiting-other
        # 3 output = 3 possible actions to do
        self.hearing = Network([n_word, 1, 3])
        self.speaking = Network([3, 1, n_word])  # 10 output = 10 words

    def reset(self):
        self.score = 0
        self.sleep = np.random.randint(0, self.turns_to_sleep)
        self.now = 0

    def shout_word(self, action_requested):
        out = self.speaking.forward_propagation(action_requested)
        return convert_to_onehot(out)

    def do_action(self, word, action_requested):
        result = convert_to_onehot(self.hearing.forward_propagation(word))
        return (result == action_requested).all()

    def change_score(self, points):
        self.score += points

    def check_sleeping(self):
        if self.sleep >= self.turns_to_sleep:
            # goes to sleep
            self.sleep = 0
            self.now = 1
        else:
            self.sleep += 1
            self.now = 0

    def is_ready(self):
        return self.now == 0

    def is_sleeping(self):
        return self.now == 1

    def is_waiting(self):
        return self.now == 2
def run():
    Network.setParams(5+1,1,2)
    net = Network(5 + 1, 1, 2)
    for i in range(100):
        net.mutate_add_edge()
        net.mutate_add_node()

    inputs = [1238, 1238, 1230, 138201, 123]
    NUM_IT = 6
    outputs = []
    for i in range(NUM_IT):
        outputs.append(net.feedforward(inputs.copy())[0])
    save_model(net, "models/testnet.pkl")


    newModel = load_model("models/testnet.pkl")
    compareOutputs = [] 
    for i in range(NUM_IT):
        compareOutputs.append(newModel.feedforward(inputs.copy())[0])
    print(compareOutputs)
    print(outputs)
    assert(compareOutputs == outputs)
示例#12
0
def main(file_name):

    #try:
    #    data = np.load('Data/' + str(file_name) + '.npy')
    #    data = np.clip(data,0,5)/5
    #except:
    #    print("Invalid File Name")
    #    return
    h5 = h5py.File(file_name, "r+")

    data = np.transpose(h5['psd'])
    data = 10. * np.log10(data)
    data = np.clip(data, 0, 5) / 5.

    if 'detections' in h5:
        del h5['detections']

    d = h5.create_dataset("detections", (4, 0),
                          maxshape=(4, None),
                          dtype="float32")

    net = Network()
    net.load()

    #f = open('Detections_' + str(file_name) + '.txt', 'a')

    for x in np.arange(0, np.shape(data)[1] - config.L, config.L):
        c = data[:, x:x + config.L]

        buffer = ImgBuffer()
        for n in range(0, np.shape(c)[0] - config.L, config.f):

            currIm = np.reshape(c[n:n + config.L, :], [1, config.L, config.L])
            pred = net.predict(currIm)

            boxes = process_pred(pred)

            buffer.update_timer()
            buffer.process_new(boxes, n, x)
            buffer.process_existing()

        buffer.clear_buffer()

        currsz = d.shape[1]
        d.resize(currsz + len(buffer.final_array), 1)
        for i in np.arange(0, len(buffer.final_array)):
            d[:, i + currsz] = buffer.final_array[i]

        #np.savetxt(f, buffer.final_array, delimiter=',', newline='\n')
    #f.close()

    boxes = np.transpose(h5['detections']).tolist()

    if 'merged_detections' in h5:
        del h5['merged_detections']

    newboxes = []
    while len(boxes):
        new = [boxes.pop()]
        for testbox in new:
            addIdx = []
            for i, box in enumerate(boxes):
                if RectIntersect(testbox, box):
                    new.append(box)
                    addIdx.append(i)
            for i in sorted(addIdx, reverse=True):
                del boxes[i]
        new = np.asarray(new)
        print(new.shape)
        newboxes.append([
            np.min(new[:, 0]),
            np.min(new[:, 1]),
            np.max(new[:, 2]),
            np.max(new[:, 3])
        ])
    newboxes = np.transpose(np.asarray(newboxes))
    print(newboxes.shape)
    if newboxes.shape[0] != 0:
        merged = h5.create_dataset("merged_detections",
                                   newboxes.shape,
                                   dtype="float32")
        merged[:, :] = newboxes
    else:
        del h5['merged_detections']

    h5.close()
示例#13
0
def manual_perfect():
    env = MEMORY_env
    n = Network(1 + 1, 1, 1, empty=False)
    n._add_edge(n.nodes[0], n.nodes[4], 1)
    n._add_edge(n.nodes[2], n.nodes[3], 1)
    print(env.evaluate(n))
示例#14
0
    # biases = set([])
    # Check edges don't have same nodes
    # edges = []
    # for species in pop.population:
    #     for net in species.nets:
    #         for edge in net.edges:
    #             if(edge.nodeIn.innv == 2):
    #                 biases.add(edge.nodeOut.innv)
    #             edges.append(edge)
    # print(f"Found {len(biases)} biases")
    # for e1 in edges:
    #     for e2 in edges:
    #         if (e1.nodeIn.innv == e2.nodeIn.innv and e1.nodeOut.innv == e2.nodeOut.innv):
    #             assert(e1.innv == e2.innv)

    pop.test()


def manual_perfect():
    env = MEMORY_env
    n = Network(1 + 1, 1, 1, empty=False)
    n._add_edge(n.nodes[0], n.nodes[4], 1)
    n._add_edge(n.nodes[2], n.nodes[3], 1)
    print(env.evaluate(n))


Network.setParams(1 + 5, 1, 1)
population_test()
# manual_perfect()
示例#15
0
            if g.forward_propagation(np.array([0.4]))[0] > n:
                return True, g.export(), g
        return False, False

    def _find_bests(ginos, n_bests):
        results = {}
        for g in ginos:
            results[g.forward_propagation(np.array([0.4]))[0]] = g.export()

        ret = []
        for key in sorted(results)[-n_bests:]:
            ret.append(list(results[key]))

        return ret

    k = 0
    n = 0.999
    pop = 3000
    n_bests = 800

    ginos = [Network([1, 5, 1]) for _ in range(pop)]

    while not _find_res(ginos, n)[0]:
        k += 1
        bests = _find_bests(ginos, n_bests)
        for i, vect in enumerate(genetic_change(bests, pop)):
            ginos[i]._import(vect)

    tmp = _find_res(ginos, n)
    print(tmp, tmp[2].forward_propagation(np.array([0.4])), k)
示例#16
0
# training data : 60000 samples
# reshape and normalize input data
X_train = X_train.reshape(X_train.shape[0], 1, 28 * 28)
X_train = X_train.astype('float32')
X_train /= 255
# encode output which is a number in range [0,9] into a vector of size 10
# e.g. number 3 will become [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
y_train = np_utils.to_categorical(y_train)

# same for test data : 10000 samples
X_test = X_test.reshape(X_test.shape[0], 1, 28 * 28)
X_test = X_test.astype('float32')
X_test /= 255
y_test = np_utils.to_categorical(y_test)

net = Network(Loss.MSE, Loss.MSE_der)
net.add(FCLayer(28 * 28, 15))
net.add(ActivationLayer(Activations.Sigmoid, Activations.Sigmoid_der))
net.add(FCLayer(15, 15))
net.add(ActivationLayer(Activations.Sigmoid, Activations.Sigmoid_der))
net.add(FCLayer(15, 10))
net.add(ActivationLayer(Activations.Sigmoid, Activations.Sigmoid_der))
print(X_train.shape)
net.fit(X_train, y_train, 0.1, 30)

print("Predicted:")
rand = np.random.randint(0, X_test.shape[0] - 4)
print(net.forward(X_test[rand:rand + 3]))
print("True:")
print(y_test[rand:rand + 3])
示例#17
0
from DataGen import *
#from Helper import *
from Config import Config
from Net import Network
from Plotting import *
from DataHandle import *
import h5py

config = Config()

#train_data, test_data, train_labels, test_labels = gen_TestTrain();
#plot_25_ims()
#plt.show()

net = Network()
load = False

if load:
    net.load()
else:
    train_data, test_data, train_labels, test_labels = gen_TestTrain()
    net.train(train_data, train_labels, 100)
    net.save()

datafile = 'Data/1460.npy'

exit(0)

#try:
#    data = np.load(datafile)
#    data = np.clip(data,0,5)/5