try:

    temporal_ON = results['temporal_ON']
    temporal_OFF = results['temporal_OFF']
    lower_edges = results['lower_edges']
    params = results['params']
    #if (params == retina.params): raise('Parameters have changed')

except:
    from retina import *
    retina = Retina(N)
    retina.params['amplitude'] = numpy.ones(retina.params['amplitude'].shape)
    

    # calculates the dimension of the parameter space
    results_dim, results_label = p.parameter_space_dimension_labels()

    # creates results array with size of parameter space dimension
    data = retina.run(retina.params,verbose=False)
    lower_edges = data['out_ON_DATA'].time_axis(t_smooth)
    N_smooth = len(lower_edges)
    
    temporal_ON, temporal_OFF = [],[]
    import progressbar # see http://projects.scipy.org/pipermail/scipy-dev/2008-January/008200.html
    pbar=progressbar.ProgressBar(widgets=[name, " ", progressbar.Percentage(), ' ',
            progressbar.Bar(), ' ', progressbar.ETA()], maxval=N_exp)
    for i_exp,experiment in enumerate(p.iter_inner()):
        params = retina.params
        params.update(experiment) # updates what changed in the dictionary
        # simulate the experiment and get its data
        data = retina.run(params,verbose=False)
from NeuroTools.sandbox import make_name

# creating a ParameterSpace
p = ParameterSpace({})

# adding fixed parameters
p.nu = 20. # rate [Hz]
p.duration = 1000.

# adding ParameterRanges
p.c = ParameterRange([0.0,0.01,0.1,0.5])
p.jitter = ParameterRange([0.0,1.0,5.0,])

# calculation of the ParameterSpace dimension and the labels of the parameters
# containing a range
dims, labels = p.parameter_space_dimension_labels()
print "dimensions: ", dims
print ' labels: ', labels

def calc_cc(p):
    """
    Generate correlated spike trains from the ParameterSet.
    
    Parameter:
    p - ParameterSet containing parameters nu (rate), c (correlation),
        duration (in ms), jitter (in ms).
        
    Returns: (cc, time_axis_cc, corrcoef)
    cc - correlation coefficient
    time_axis_cc - time axis for cross-correlation (for plotting)
    corrcoef - correlation coefficient between the two SpikeTrains
示例#3
0
# adding fixed parameters
p.nu = 20.  # rate [Hz]
p.duration = 1000.

# adding ParameterRanges
p.c = ParameterRange([0.0, 0.01, 0.1, 0.5])
p.jitter = ParameterRange([
    0.0,
    1.0,
    5.0,
])

# calculation of the ParameterSpace dimension and the labels of the parameters
# containing a range
dims, labels = p.parameter_space_dimension_labels()
print "dimensions: ", dims
print ' labels: ', labels


def calc_cc(p):
    """
    Generate correlated spike trains from the ParameterSet.
    
    Parameter:
    p - ParameterSet containing parameters nu (rate), c (correlation),
        duration (in ms), jitter (in ms).
        
    Returns: (cc, time_axis_cc, corrcoef)
    cc - correlation coefficient
    time_axis_cc - time axis for cross-correlation (for plotting)
示例#4
0
results = shelve.open('results/mat-' + name)
try:

    temporal_ON = results['temporal_ON']
    temporal_OFF = results['temporal_OFF']
    lower_edges = results['lower_edges']
    params = results['params']
    #if (params == retina.params): raise('Parameters have changed')

except:
    from retina import *
    retina = Retina(N)
    retina.params['amplitude'] = numpy.ones(retina.params['amplitude'].shape)

    # calculates the dimension of the parameter space
    results_dim, results_label = p.parameter_space_dimension_labels()

    # creates results array with size of parameter space dimension
    data = retina.run(retina.params, verbose=False)
    lower_edges = data['out_ON_DATA'].time_axis(t_smooth)
    N_smooth = len(lower_edges)

    temporal_ON, temporal_OFF = [], []
    import progressbar  # see http://projects.scipy.org/pipermail/scipy-dev/2008-January/008200.html
    pbar = progressbar.ProgressBar(widgets=[
        name, " ",
        progressbar.Percentage(), ' ',
        progressbar.Bar(), ' ',
        progressbar.ETA()
    ],
                                   maxval=N_exp)